匿名
未登录
登录
丢石头百科
搜索
查看“Jetson Nano系列教程7:TensorFlow入门介绍(三)”的源代码
来自丢石头百科
名字空间
页面
讨论
更多
更多
页面选项
查看
查看源代码
历史
←
Jetson Nano系列教程7:TensorFlow入门介绍(三)
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看与复制此页面的源代码。
一、前言 上篇用JetsonNano+TensorFlow跑MNIST手写数字分类的Demo,本篇通过PS生成的0~9共10个数字的28*28像素图片进行测试。 二、测试 生成黑底白字28*28像素的图片如下图所示: [[File:190742l8bdow8myoyd81ya.png]] 上篇构建的神经网络基础上加入读取图片和运行测试相关代码 <syntaxhighlight lang="python"> from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf #导入图片处理相关库 from PIL import Image import numpy as np from itertools import chain #读取0~9其中一张图片进行测试,读者感兴趣可以尝试修改数字进行其它图片测试 image_tem = Image.open('./2.PNG') image_array = np.array(image_tem) image_array=np.asarray(image_array,dtype="float32") image_array = list(chain.from_iterable(image_array)) image_array = [image_array] mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32, [None,10]) w1 = tf.Variable(tf.truncated_normal([784,1024]),dtype=tf.float32) b1 = tf.Variable(tf.zeros([1,1024]),dtype=tf.float32) a = tf.nn.relu(tf.matmul(x,w1) + b1) w2 = tf.Variable(tf.ones([1024,10])) b2 = tf.Variable(tf.zeros([1,10])) y_= tf.nn.softmax(tf.matmul(a,w2) + b2) #将图片输入到神经网络中去 b = tf.nn.relu(tf.matmul(image_array,w1)+b1) y_image = tf.nn.softmax(tf.matmul(b,w2)+b2) loss= tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_),axis=1)) train_step = tf.train.AdamOptimizer(0.0001).minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) correct_prediction = tf.equal(tf.argmax(y_,axis=1), tf.argmax(y,axis=1))accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys}) #待神经网络权重偏置调整完成后,直接运行待测试的图片 print(sess.run(y_image))</syntaxhighlight> 当读取图片数字为2的时候,实际测试结果如下,感兴趣读者可测试其它图片: [[File:193401ias5p5dtzap6kva8.png]] 相关文件请点击右边下载 --> <a class="attach" href="portal.php?mod=attachment&id=1640" target="_blank">MNIST_TEST.zip 用户可使用SSH登录JetsonNano终端, 不熟悉用户点击我参阅SSH登录 ,在终端下输入下面命令测试: <syntaxhighlight lang="python"> wget http://{{SERVERNAME}}/study/portal.php?mod=attachment&id=1640 unzip -o MNIST_TEST.zip sudo python3 mnist_test.py</syntaxhighlight> 以上资料由waveshare team整理<!--5f39ae17-8c62-4a45-bc43-b32064c9388a:W3siYmxvY2tJZCI6IjIxNjgtMTU2NDA0MTIzNjI5MiIsImJsb2NrVHlwZSI6InBhcmFncmFwaCIsInN0eWxlcyI6eyJ0ZXh0LWluZGVudCI6MSwiYWxpZ24iOiJsZWZ0IiwiaW5kZW50IjowLCJsaW5lLWhlaWdodCI6MS43NSwiYmFjay1jb2xvciI6IiIsInBhZGRpbmciOiIifSwidHlwZSI6InBhcmFncmFwaCIsInJpY2hUZXh0Ijp7ImRhdGEiOlt7ImNoYXIiOiLmnKwifSx7ImNoYXIiOiLmlocifSx7ImNoYXIiOiLmmK8ifSx7ImNoYXIiOiLlnKgifSx7ImNoYXIiOiJKIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJOIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoi5bmzIn0seyJjaGFyIjoi5Y+wIn0seyJjaGFyIjoi5L2/In0seyJjaGFyIjoi55SoIn0seyJjaGFyIjoiVCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiRiJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6IuS9nCJ9LHsiY2hhciI6IuaJiyJ9LHsiY2hhciI6IuWGmSJ9LHsiY2hhciI6IuaVsCJ9LHsiY2hhciI6IuWtlyJ9LHsiY2hhciI6IuWIhiJ9LHsiY2hhciI6IuexuyJ9LHsiY2hhciI6IueahCJ9LHsiY2hhciI6IkQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiLvvIwifSx7ImNoYXIiOiLml6gifSx7ImNoYXIiOiLlnKgifSx7ImNoYXIiOiLlkIwifSx7ImNoYXIiOiLlkIQifSx7ImNoYXIiOiLkvY0ifSx7ImNoYXIiOiLnlKgifSx7ImNoYXIiOiLmiLcifSx7ImNoYXIiOiLkuqQifSx7ImNoYXIiOiLmtYEifSx7ImNoYXIiOiLkvb8ifSx7ImNoYXIiOiLnlKgifSx7ImNoYXIiOiLlpoIifSx7ImNoYXIiOiLkvZUifSx7ImNoYXIiOiLlhaUifSx7ImNoYXIiOiLpl6gifSx7ImNoYXIiOiJKIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJOIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoi55qEIn0seyJjaGFyIjoiVCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiRiJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6Iu+8jCJ9LHsiY2hhciI6IuW4riJ9LHsiY2hhciI6IuWKqSJ9LHsiY2hhciI6IueUqCJ9LHsiY2hhciI6IuaItyJ9LHsiY2hhciI6IuWOmCJ9LHsiY2hhciI6Iua4hSJ9LHsiY2hhciI6IuWFpSJ9LHsiY2hhciI6IumXqCJ9LHsiY2hhciI6IkoifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6Ik4ifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiLmnLoifSx7ImNoYXIiOiLlmagifSx7ImNoYXIiOiLlraYifSx7ImNoYXIiOiLkuaAifSx7ImNoYXIiOiLml7YifSx7ImNoYXIiOiLpgYcifSx7ImNoYXIiOiLliLAifSx7ImNoYXIiOiLnmoQifSx7ImNoYXIiOiLpl64ifSx7ImNoYXIiOiLpopgifSx7ImNoYXIiOiLjgIIifV0sImlzUmljaFRleHQiOnRydWUsImtlZXBMaW5lQnJlYWsiOnRydWV9fV0=--><!--5f39ae17-8c62-4a45-bc43-b32064c9388a:W3siYmxvY2tJZCI6Ijc0NjAtMTU2Mzc5MjMxOTA3NSIsImJsb2NrVHlwZSI6ImhlYWRpbmciLCJzdHlsZXMiOnsiYWxpZ24iOiJsZWZ0IiwiaW5kZW50IjowLCJ0ZXh0LWluZGVudCI6MCwibGluZS1oZWlnaHQiOjEuNzUsImJhY2stY29sb3IiOiIiLCJwYWRkaW5nIjoiIn0sInR5cGUiOiJoZWFkaW5nIiwicmljaFRleHQiOnsiZGF0YSI6W3siY2hhciI6IuS4gCIsInN0eWxlcyI6eyJib2xkIjp0cnVlLCJmb250LXNpemUiOjE4LCJjb2xvciI6IiM1OTU5NTkifX0seyJjaGFyIjoi44CBIiwic3R5bGVzIjp7ImJvbGQiOnRydWUsImZvbnQtc2l6ZSI6MTgsImNvbG9yIjoiIzU5NTk1OSJ9fSx7ImNoYXIiOiLliY0iLCJzdHlsZXMiOnsiYm9sZCI6dHJ1ZSwiZm9udC1zaXplIjoxOCwiY29sb3IiOiIjNTk1OTU5In19LHsiY2hhciI6IuiogCIsInN0eWxlcyI6eyJib2xkIjp0cnVlLCJmb250LXNpemUiOjE4LCJjb2xvciI6IiM1OTU5NTkifX1dLCJpc1JpY2hUZXh0Ijp0cnVlLCJrZWVwTGluZUJyZWFrIjp0cnVlfSwibGV2ZWwiOiJiIn1d--> <b>Tab标签:</b> Jetson Nano系列教程 TensorFlow python
返回至
Jetson Nano系列教程7:TensorFlow入门介绍(三)
。
导航
导航
首页
最近更改
随机页面
MediaWiki帮助
首页
首页
树莓派
主机
配件包
外壳
键鼠
电源
扩展板
显示屏
墨水屏
摄像模块
通信模块
继电器
电机驱动板
游戏机
产品分类
树莓派
Arduino
micro:bit
STM32
Espressif
WiFi模块
蓝牙模块
无线模块
LoRa模块
4G模块
GSM
GPRS
以太网
导航模块
北斗卫星
GPS
LCD
墨水屏
OLED
摄像头
USB模块
串口模块
RS232
RS485
CAN
传感器
温度模块
湿度模块
气压模块
继电器
电机模块
指纹模块
电平转换
音频模块
编程器
Wiki工具
Wiki工具
特殊页面
页面工具
页面工具
用户页面工具
更多
链入页面
相关更改
页面信息
页面日志