
 

Version 1.7
Copyright © 2016

ESP8266
FOTA Guide

About This Guide
This document explains how to upgrade ESP8266 firmware over Espressif Cloud through
Wi-Fi.
The document is structured as follows.

Release Notes

Chapter Title Content

Chapter 1 Overview Introduction to two firmware update modes: FOTA (Firmware Over
the Air) and Non-FOTA.

Chapter 2 Usage Guide Introduction to firmware updates on Espressif Cloud, using
ESP8266_NONOS_SDK\IoT_Demo as an example.

Chapter 3 FOTA Mechanism Details on FOTA implementation and demo applicaton.

Appendix Ⅰ Firmware Versioning Rules Introduction to the naming rules of the firmware version when using
ESP8266_NONOS_SDK\IoT_Demo.

Date Version Release Notes

2016.04 V1.6 Initial release.

2016.08 V1.7 Major revision.

Table of Contents
1. Overview	 1
...

2. Usage Guide	 2
...
2.1. Compiling the Firmware	 2
...

2.1.1. Modifying IoT_Demo	 2
...
2.1.2. Compiling IoT_Demo	 4
..

2.2. Downloading the Firmware	 5
..
2.2.1. master_device_key.bin	 5
...
2.2.2. Download Addresses	 6
..

2.3. IOT Espressif Configuration	 7
...
2.4. FOTA Process	 10
..

3. FOTA Mechanism	 15
...
3.1. Flash Layout	 15
...
3.2. Software Implementation	 16
...

3.2.1. ESP8266_NONOS_SDK	 16
...
3.2.2. ESP8266_RTOS_SDK	 16
...
3.2.3. Requirements for Custom Server	 16
...

I. Appendix - Firmware Versioning Rules	 18
...
I.I. Versioning Rules	 18
...
I.II. Version Value-related Rules	 20...

"

1. Overview

1. Overview
ESP8266 provides two main updating modes of the program firmware, specified as follows:

• Non-FOTA mode does not support downloading the latest version of the ESP8266
firmware from Espressif Cloud through Wi-Fi.

• FOTA (Firmware Over the Air) mode supports firmware download and upgrade to the
latest version of the ESP8266 firmware from Espressif Cloud through Wi-Fi.

Table 1-1. Comparison between FOTA and Non-FOTA

Firmware upgrade mode Main program firmware Compiling difference

Non-FOTA
eagle.flash.bin Select Non-boot mode in STEP 1 in

Section 2.1.2, while compiling firmware.eagle.irom0text.bin

FOTA
boot.bin Select boot mode in STEP 1 and user1.bin

in STEP 2, while compiling firmware.user1.bin

📖 Note:
For more information on compiling and burning, please refer to ESP8266-SDK Getting Started Guide.

Espressif " /191 2016.08

http://espressif.com/sites/default/files/documentation/2a-esp8266-sdk_getting_started_guide_en.pdf

"

2. Usage Guide

2. Usage Guide
This chapter uses IoT_Demo of ESP8266_NONOS_SDK as an example to illustrate the
FOTA process.

2.1. Compiling the Firmware
2.1.1. Modifying IoT_Demo

1. ESP8266 SDK download link: 
http://www.espressif.com/support/download/sdks-demos

2. IoT_Demo provides demo application programs for three devices, Smart Light, Smart
Plug and Sensor. From these three, Sensor does not support FOTA. The default device
type is Smart Light.

3. Modify the user parameter area location according to the actual flash size of the
ESP8266 hardware module.

Step Result

• Take
ESP8266_NONOS_SDK_V2.0.0_16_07_19 as
an example. Users should download and unzip
it.

• As shown in the screenshot 👉 , copy
ESP8266_NONOS_SDK\examples\IoT_Demo
(to be compiled) to \ESP8266_NONOS_SDK’s
root directory.

 Step Result

• Enable device type in ESP8266_NONOS_SDK
\IoT_Demo\include\user_config.h.

• As shown in the screenshot 👉 , Smart Light is
taken as an example.

⚠ Note:
Please enable only one device type to debug every
time.

Espressif " /"2 21 2016.08

http://www.espressif.com/support/download/sdks-demos

"

2. Usage Guide

Different flash maps correspond to different modified locations in header files, as shown in
Table 2-1.

 Step Result

As shown in the screenshot 👉 , take 2048 KB
flash and 512+512 map as an example, and
modify the value of #define
PRIV_PARAM_START_SEC in
ESP8266_NONOS_SDK\IoT_Demo\include
\user_light.h.

💬 Note:

If a Smart Plug device type is used, modify the
value of #define PRIV_PARAM_START_SEC in
user_plug.h.

As shown in the screenshot 👉 , take 2048 KB
flash and 512+512 map as an example, and
modify the value of #define
ESP_PARAM_START_SEC in
ESP8266_NONOS_SDK\IoT_Demo\include
\user_esp_platform.h.

💬 Note:

Modify the same address if a Smart Plug device
type is used.

Table 2-1. Modifying the Field in include File (Unit: kB)

Default value
(512)

Modified Value

1024
2048

(512+512)
2048

(1024+1024)
4096

(512+512)
4096

(1024+1024)

0x3C 0x7C 0x7C 0xFC 0x7C 0xFC

0x3D 0x7D 0x7D 0xFD 0x7D 0xFD

Espressif " /"3 21 2016.08

"

2. Usage Guide

2.1.2. Compiling IoT_Demo

Figure 2-1 shows the process of compiling ESP8266_NONOS_SDK\IoT_Demo. For more
details, please refer to ESP8266-SDK Getting Started Guide.

"
Figure 2-1. Compiling Process

0 1 2

0

STEP 1: choose boot version
(0=boot_v1.1, 1=boot_v1.2+, 2=none)
enter(0/1/2, default 2)

STEP 2: choose bin generate
(0=eagle.flash.bin+eagle.irom0text.bin
, 1=user1.bin, 2=user2.bin)
enter (0/1/2, default 0)

FOTA? N

New
version?

Y

N
Y

First-time
usage?

2

N

1Y

0 1 2 3
STEP 3: choose spi speed
(0=20MHz, 1=26.7MHz, 2=40MHz, 3=80MHz)
enter (0/1/2/3, default 2)

0 1 2 3
STEP 4: choose spi mode
(0=QIO, 1=QOUT, 2=DIO, 3=DOUT)
enter (0/1/2/3, default 0)

0 2 3
STEP 5: choose spi size and map
0= 512KB(256KB+ 256KB)
enter (0/2/3/4/5/6, default 0)

Choose as required

Choose as required

Choose as required

4 5 6

Example Option

Espressif " /"4 21 2016.08

http://espressif.com/sites/default/files/documentation/2a-esp8266-sdk_getting_started_guide_en.pdf

"

2. Usage Guide

2.2. Downloading the Firmware
2.2.1. master_device_key.bin

master_device_key is the device ID. Espressif Cloud Server assigns it automatically when
the developer builds a smart device on it. Each ID is unique. The device can get Espressif
Cloud services with this ID.

1. Register an account and log in to Espressif Cloud (http://iot.espressif.cn/#/), create a
smart light device.

⚠ Notes:
• user1.bin and user2.bin are generated by compiling the same application code, but make sure you

choose 2 in STEP 2 when generating user2.bin. Developers can see more details below：

- Compile the application to generate user1.bin
- Call make clean to clear the temporary files generated from the last step
- Compile the application code to generate user2.bin (make exactly the same choices in the

compiling process except for STEP 2).
• The difference between user1.bin and user2.bin is that each is stored in a different location in flash.

• By default, burn user1.bin to flash and upload user1.bin and user2.bin to cloud for repeating
downloading and upgrading.

• In Figure 2-1, the example options are marked in green. Users can select one option as required.

• Only sdk_v1.1.0 + boot 1.4 + flash download tool_v1.2 and later versions support compiling option 5
and option 6 in STEP 5.

📖 Note:
Please refer to http://iot.espressif.cn/#/help-en/ when using Espressif Cloud for the first time.

 Step Result

As shown in the screenshot 👉 , log in to Espressif
Cloud, click “Device” and then click “+ Create”.

Espressif " /"5 21 2016.08

http://iot.espressif.cn/#/
http://iot.espressif.cn/#/help-en/

"

2. Usage Guide

2. Export master_device_key.bin from Espressif Cloud.

2.2.2. Download Addresses

Table 2-2 lists the download addresses for different flash sizes for FOTA firmware.

Create a smart light device, for example:
- Name: light-001
- Set privacy level to “Public Device” which 

supports sharing.
- Product Choice “Create New Products”
- Product Name: ESP-light
- Product Type: Lighting

Then click “Create” at the bottom.

💬 Note:

Developers can define “Name” and “Product
Name” at their will.

1. As is shown in the screenshot 👉 , a new device
page will show up after the creation is finished.

2. Developers can see the Master Device Key value
on the device page.

 Step Result

 Step Result

As shown in the screenshot 👉 , click “Download
Key BIN”, which is at the lower right corner of the
“light-001” page.

As is shown in the screenshot 👉 , the
master_device_key.bin in “light-001” will be
downloaded.

- The name of the bin file is the same as the
Master Device Key value of “light-001”.

Table 2-2. The Download Addresses for FOTA Firmware (Unit: KB)

Binaries

Download addresses for flash of different capacities

512 1024
2048 4096

512+512 1024+1024 512+512 1024+1024

master_device_key.bin 0x3E000 0x7E000 0x7E000 0xFE000 0x7E000 0xFE000

Binaries

Espressif " /"6 21 2016.08

"

2. Usage Guide

2.3. IOT Espressif Configuration
1. Refer to Section 2.1 for modifying and compiling IoT_Demo.

2. Refer to Section 2.2 for burning firmware to ESP8266 module.

3. Power on ESP8266 (the default baud rate is 74880), and it will run smart light.
4. Connect ESP8266 module to the router with IOT Espressif (mobile App developed by

Espressif).

blank.bin (Partition 1) 0x7B000 0xFB000 0x1FB000 0x3FB000

esp_init_data_default.bin 0x7C000 0xFC000 0x1FC000 0x3FC000

blank.bin (Partition 2) 0x7E000 0xFE000 0x1FE000 0x3FE000

boot.bin 0x00000

user1.bin 0x01000

Download addresses for flash of different capacities

512 1024
2048 4096

512+512 1024+1024 512+512 1024+1024

Binaries

Table 2-3. FOTA Firmware Description

Binaries Description

master_device_key.bin

• Applied from Espressif Cloud for Espressif Cloud services.
• Stored in user parameter area, and user’s application program define the

storage address.
• The download address in Table 2-2 is an example set in IoT_Demo

according to Section 2.1.1

blank.bin (Partition 1)

• Initializes the RF_CAL parameter area.
• user_rf_cal_sector_set defines the download address.
• The download address in Table 2-2 is an example set in IoT_Demo.
• Provided by Espressif and is under the path ESP266_SDK\bin.

esp_init_data_default.bin

• Initializes other RF parameters area, downloaded at least once.
• When RF_CAL parameter area is initialized, this binary needs to be burnt as

well.
• Provided by Espressif and is under the path ESP266_SDK\bin.

blank.bin (Partition 2)
• Initializes system parameter area.
• Provided by Espressif and is under the path ESP266_SDK\bin.

boot.bin Main program provided by Espressif, under the path ESP266_SDK\bin.

user1.bin Main program generated by compiling application program, under the path
ESP266_SDK\bin\upgrade.

Espressif " /"7 21 2016.08

"

2. Usage Guide

The IOT Espressif configuration process is as follows:
(1) Log in to IOT Espressif with the username and password for Espressif Cloud.

"
Figure 2-2. IOT Espressif Login Page

(2) Click the menu bar at the upper left corner and select “Add Devices”.

"
Figure 2-3. IOT Espressif Menu Bar

📖 Note:
To download IOT Espressif, please click http://www.espressif.com/support/download/apks.

Espressif " /"8 21 2016.08

http://www.espressif.com/support/download/apks

"

2. Usage Guide

(3) Enter the “Add Devices” page and click “SoftAP Configure” at the upper right
corner.

"
Figure 2-4. Add devices Page

(4) The App would list all the nearby APs whose SSIDs begin with “ESP”. Click the
target device and select “Make device connect to cloud”.

"
Figure 2-5. Device Configure Page

Espressif " /"9 21 2016.08

"

2. Usage Guide

(5) After entering router SSID and password, the ESP8266 device will connect to the
router, which will signal the end of the App configuration.

"
Figure 2-6. Connecting ESP8266 Device to Router

5. The ESP8266 device accesses to the internet via the router and activates itself on
Espressif Cloud automatically. After verification, the device status will change to
“Activated” on the right side of the device page after login.

6. ESP8266 Smart Light can receive Espressif Cloud services after verification.

2.4. FOTA Process

 Step Result

• Log in to Espressif Cloud and click “Device” at
the upper right corner.

• Click and enter device “light-001” page. The
device status changes to “Activated” on the
right side of the page 👉 .

📖 Notes:
• Espressif Cloud Help document http://iot.espressif.cn/#/help-en/.

• Espressif Cloud API instructions http://iot.espressif.cn/#/api-en/.

Espressif " /"10 21 2016.08

http://iot.espressif.cn/#/help-en/
http://iot.espressif.cn/#/api-en/

"

2. Usage Guide

1. Log in to Espressif Cloud (http://iot.espressif.cn/#/), click “Product”.

2. Upload the new version of of user1.bin and user2.bin to the Cloud Server.

Step Result

Click the product to upgrade, for example, the
product “ESP-light” that was created in Section
2.2.1.

As is shown in the figure on the right 👉 , “ROM
Deploy” is on the right side of this page.

📖 Notes:
• If ESP8266_NONOS_SDK\examples\IoT_Demo is used, the firmware versioning should be compliant

with the statement in the Appendix (such as “v1.1.0t45772(a)”); otherwise, upgrade will fail.

- FOTA firmware versioning should be in accordance with the relevant definition in the IoT_Demo
\include\user_iot_version.h code. For more details, please refer to the Appendix.

• The firmware versioning rule is not required if the developers implement application by themselves, instead
of using IoT_Demo, or, if the application code is based on ESP8266_RTOS_SDK.

Step Result

As is shown in the figure on the right 👉 , click “+
Deploy” in ROM Deploy page and upload the new
version of firmware.

- Version: v1.1.0t45772(a)
- Select user1.bin to upload
- Click “+” icon
- Select user2.bin to upload
- Click “Save”

⚠ Notes:
• Firmware name must be either user1.bin or

user2.bin.

• Developers must upload both user1.bin and
user2.bin to the server.

As shown in the figure on the right 👉 , click “Set as
Current” after saving the new version of firmware.

Espressif " /"11 21 2016.08

http://iot.espressif.cn/#/

"

2. Usage Guide

3. There are two ways to upgrade the new version of firmware after it has been uploaded
to the Cloud Server.
(1) Method 1: Upgrade through Espressif Cloud settings.

(2) Method .2: Upgrade through the IOT Espressif configuration.

As is shown in the figure on the right 👉 , click “OK”
in the pop-up tip box to confirm the version setting.

Step Result

Step Result

• Enter the device page on Espressif Cloud, such
as the “light-001” page that was created
before.

• Select the new firmware version in “ROM
Deploy” at the lower right corner.

• Click “Upgrade” as is shown in the figure 👉 .

Click “OK” and start the upgrade.

• After upgrading the new version of firmware to
ESP8266 module, insert action=“sys_reboot”
in the RPC Request page, and click “Request”.

• Espressif Cloud will notify ESP8266 to reboot and
run the new version of firmware.

As shown in the figure on the right 👉 , after
refreshing the device page, the new version name
shows up.

⚠ Notice:
Firmware version cannot be later than v1.4.0 when using the mobile App to upgrade the firmware. Otherwise,
upgrade will fail.

Espressif " /"12 21 2016.08

"

2. Usage Guide

Step Result

As shown in the figure on the right 👉 , log in to IOT
Espressif. The current version of the target device is
v1.0.5.

Click the target device and select “Upgrade cloud”
at the upper right corner of the device page.

After upgrading, the home page of the App shows
that the firmware version of the ESP8266 smart light
has been upgraded to the new version:
v1.1.0t45772(a).

Espressif " /"13 21 2016.08

"

2. Usage Guide

📖 Notes:
• The device name “ESP_97ED19” is the name of ESP8266 SoftAP set in the application program

(IoT_Demo). If it has not been set yet, then it is “ESP_XXXXXX” by default. And “XXXXXX” is the last
three bytes of the actual MAC address of the device.

• The ESP8266 device can download the latest firmware from the Cloud server after setting “Upgrade
cloud”.

- After downloading, the ESP8266 device sends a notification of completion.

- APP will notify the ESP8266 device to restart.

- Then APP will run the new version of firmware after it has received the notification above.

• If “Upgrade local” is selected, the App will:

- download the new version of firmware from server to mobile phone,

- then push it to the ESP8266 device via LAN (Local Area Network) to upgrade it.

Use this if your network is behind a proxy and internet cannot be accessed directly by the ESP device.

Espressif " /"14 21 2016.08

"

3. FOTA Mechanism

3. FOTA Mechanism
3.1. Flash Layout

"
Figure 3-1. Flash Layout

Partitioning Description

• user1.bin and user2.bin are generated by the same application program using
different compiling procedures. The binaries are stored in different locations in the SPI
Flash. Both of them can run on the system.

• System parameter area stores a flag bit to indicate whether to run user1.bin or
user2.bin.

• Boot runs first upon initialization, reads the flag bit and decides whether to run
user1.bin or user2.bin. After that, it will read and run the binary from the
corresponding address in SPI Flash.

Example:

1. Initial state: boot.bin + user1.bin of version 1.0.0 + the flag bit indicates that user1
is running.

2. Upload user1.bin and user2.bin of v1.1.0 to Cloud server.

3. When the ESP8266 smart device is upgrading, it reads the system flag bit first (while
user1 is running), and downloads user2.bin of v1.1.0 from Cloud server to Partition 2 in
Figure 3-1.

4. After downloading, users can restart the ESP8266 smart device and update firmware.
The ESP8266 device will:

- modify the flag bit to indicate that user2 is running, and
- restart (system_upgrade_reboot) to run user2.bin of v1.1.0.

System Program
1.bin User Data

User Param
master_device_key.bin

System Param (16 kB)
 blank.bin

esp_init_data_default.bin

System Program
2.bin User Data

Partition 1 Partition 2

Boot Data Reserved

FOTA

Espressif " /"15 21 2016.08

"

3. FOTA Mechanism

5. For the next upgrade, please repeat Step 2 and download user1.bin of v1.2.0 to
Partition 1 and overwrite the old version. On completion, the device can then reboot and
switch to user1.bin for the upgrade to take effect.

3.2. Software Implementation

3.2.1. ESP8266_NONOS_SDK

Upgrade APIs:

• Reference document ESP8266 Non-OS SDK API Reference.
Demo application program:

• Refer to ESP8266 NONOS SDK\examples\IoT_Demo\user\user_esp_platform.c.
Upgrade is realized by calling user_esp_platform_upgrade_begin series functions.

• Download link: http://www.espressif.com/support/download/sdks-demos

3.2.2. ESP8266_RTOS_SDK

Upgrade APIs:

• Reference Document ESP8266 RTOS SDK API Reference.

Demo application program:
• Refer to ESP8266_IOT_PLATFORM\upgrade.
• Download link: https://github.com/espressif/ESP8266_IOT_PLATFORM

3.2.3. Requirements for Custom Server

If developers use custom cloud server for upgrading instead of Espressif Cloud, the custom
cloud server should support the following upgrading process:

1. The ESP8266 smart device sends the HEAD instruction to Cloud Server and quires the
length of firmware to download. The HTTP packet header that server responds with is
required to have the length information of firmware.

2. The ESP8266 smart device clears the flash sector (spi_flash_erase_sector) into which
the new firmware will be written according to the length information obtained in Step 1.

⚠ Notice:
Developers are not restricted to using Espressif Cloud services to upgrade firmware. They can use other
Cloud servers as well through HTTP protocol by implementing the software interfaces provided by ESP8266
SDK.

📖 Note:
ESP8266_IOT_PLATFORM is a demo application program based on ESP8266_RTOS_SDK.

Espressif " /"16 21 2016.08

http://espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf
http://www.espressif.com/support/download/sdks-demos
https://github.com/espressif/ESP8266_RTOS_SDK/blob/master/documents/20B-ESP8266__RTOS_SDK_API%20Reference.pdf
https://github.com/espressif/ESP8266_IOT_PLATFORM

"

3. FOTA Mechanism

3. ESP8266 smart device sends GET instruction to Cloud Server and downloads the new
version firmware from Cloud Server to write into flash.

The custom server must support:

- the function of returning the firmware length information in Step 1, and
- the downloading function in Step 3.

Otherwise, FOTA upgrade cannot be supported. 

Espressif " /"17 21 2016.08

"

I. Appendix

I. Appendix - Firmware
Versioning Rules

IoT_Demo of ESP8266_NONOS_SDK specifies the firmware versioning rules. When
uploading the firmware to Espressif Cloud, please follow these rules. Otherwise, FOTA will
fail.
The versioning rules are not applicable if:

• developers implement applications by themselves instead of using IoT_Demo, or
• the application program code is based on ESP8266_RTOS_SDK.

I.I. Versioning Rules
• Template: [v|b]Num1.Num2.Num3.tPTYPE([o|l|a|n])
• Example: v1.0.2t45772(a)

• Version Type: v or b

- v: version, formal version

- b: beta, beta version
- Corresponds to #define VERSION_TYPE in IoT_Demo\include

\user_iot_version.h.

• Version value: Num1.Num2.Num3

- Num: Integer, range of [0, 9].

- Example: 1.0.5
- Corresponds to the following definitions in IoT_Demo\include\user_iot_version.h

- Version value cannot be over 1.4.0. since IOT Espressif currently supports up to
1.4.0.

#define IOT_VERSION_MAJOR 1U

Table I. Firmware Versioning Rules Description

v 1.0.2 t 45772 (a)

version type version value type flag device type FOTA or Non-FOTA

variable variable fixed variable variable

⚠ Notice:
Espressif Cloud does not support the co-existence of both formal and beta versions of firmware with the
same version value. For example, v1.0.5 and b1.0.5 cannot co-exist on Espressif Cloud.

Espressif " /"18 21 2016.08

"

I. Appendix

#define IOT_VERSION_MINOR 0U

#define IOT_VERSION_REVISION 5U

• Type flag: t

- t: Type flag, followed by PTYPE, the device type value.
• Device type value: PTYPE

- PTYPE: The device’s ptype (product type) value on Espressif Cloud.

- Inquire about ptype value on Espressif Cloud: http://iot.espressif.cn/#/api

- Corresponds to #define device_type in IoT_Demo\include\user_iot_version.h.

"
• FOTA or Non-FOTA

- o: online, online upgrade support

- l: local, local upgrade support

- a: all supported , support for both online and local upgrade

- n: none supported, lack of support for upgrade (Non-FOTA)

- Corresponds to the following definitions of IoT_Demo\include\user_iot_version.h

#define ONLINE_UPGRADE 0

#define LOCAL_UPGRADE 0

#define ALL_UPGRADE 1

#define NONE_UPGRADE 0

Espressif " /"19 21 2016.08

http://iot.espressif.cn/#/api/

"

I. Appendix

I.II. Version Value-related Rules
• Espressif Cloud does not support two or more firmware versions that support FOTA (o, l,

a) with the same ptype and version value.
- For example, v1.0.3t45772(o), v1.0.3t45772(l), v1.0.3t45772(a), b1.0.3t45772(l) and

b1.0.3t45772(a) are not allowed to co-exist, if b1.0.3t45772(o) also exists.
• Espressif Cloud does not support two or more firmware versions that do not support

FOTA (o, l, a) with the same ptype and version value.
- For example, v1.0.3t45772(n) is not allowed to exist if b1.0.3t45772(n) exists at the

same time.
• When Non-FOTA firmware exits, Espressif Cloud does not support two or more firmware

versions that support FOTA (o, l, a) with the same version value.
- For example, if b1.0.3t45772(n) exists, only one version of firmware among

b1.0.3t45772(o), b1.0.3t45772(l), b1.0.3t45772(a), v1.0.3t45772(o), v1.0.3t45772(l)
and v1.0.3t45772(a) can exist.

• Firmware versions with different ptype can have the same version value.
- For example, b1.0.3t12335(n) can co-exist with b1.0.3t45772(n).

Espressif " /"20 21 2016.08

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without
notice.
THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.
All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.
Copyright © 2016 Espressif Inc. All rights reserved.

Espressif IOT Team

www.espressif.com

�

http://www.espressif.com

