
ESP AT Commands Set
1. AT Commands List

1.1 Basic AT Commands List
1.2 Wi-Fi AT Commands List
1.3 TCP/IP-Related AT Commands List
1.4 [ESP32 Only] BLE AT Commands List
1.5 [ESP32 Only] ETH AT Commands List
1.6 [ESP32 Only] BT AT Commands List
1.7 [ESP32 Only] MQTT AT Commands List
1.8 HTTP AT Command List

2. Basic AT Commands
2.1 AT—Tests AT Startup
2.2 AT+RST—Restarts the Module
2.3 AT+GMR—Checks Version Information
2.4 AT+GSLP—Enters Deep-sleep Mode
2.5 ATE—AT Commands Echoing
2.6 AT+RESTORE—Restores the Factory Default Settings
2.7 AT+UART_CUR—Current UART Configuration, Not Saved in Flash
2.8 AT+UART_DEF—Default UART Configuration, Saved in Flash
2.9 AT+SLEEP—Sets the Sleep Mode
2.10 AT+SYSRAM—Checks the Remaining Space of RAM
2.11 AT+SYSMSG—Control to use new or old information
2.12 [ESP32 Only] AT+SYSFLASH—Set User Partitions in Flash
2.13 [ESP32 Only] AT+FS—Filesystem Operations
2.14 AT+RFPOWER-Set RF TX Power
2.15 AT+SYSROLLBACK-Roll back to the previous firmware
2.16 AT+SYSTIMESTAMP—Set local time stamp.
2.17 AT+SYSLOG : Enable or disable the AT error code prompt.
2.18 AT+SYSLSP—Enters light-sleep mode (Only Support ESP32)
2.19 AT+SYSLSPCFG—Config the light-sleep wakeup source (Only Support ESP32)

3 Wi-Fi AT Commands
3.1 AT+CWMODE—Sets the Wi-Fi Mode (Station/SoftAP/Station+SoftAP)
3.2 AT+CWJAP—Connects to an AP
3.3 AT+CWLAPOPT—Sets the Configuration for the Command AT+CWLAP
3.4 AT+CWLAP—Lists the Available APs
3.5 AT+CWQAP—Disconnects from the AP
3.6 AT+CWSAP—Configuration of the ESP32 SoftAP
3.7 AT+CWLIF—IP of Stations to Which the ESP32 SoftAP is Connected
3.8 AT+CWQIF—Disconnect Station from the ESP SoftAP
3.9 AT+CWDHCP—Enables/Disables DHCP
3.10 AT+CWDHCPS—Sets the IP Address Allocated by ESP32 SoftAP DHCP (The configuration is
saved in Flash.)
3.11 AT+CWAUTOCONN—Auto-Connects to the AP or Not
3.12 AT+CIPSTAMAC—Sets the MAC Address of the ESP32 Station
3.13 AT+CIPAPMAC—Sets the MAC Address of the ESP32 SoftAP
3.14 AT+CIPSTA—Sets the IP Address of the ESP32 Station
3.15 AT+CIPAP—Sets the IP Address of the ESP32 SoftAP
3.16 AT+CWSTARTSMART—Starts SmartConfig
3.17 AT+CWSTOPSMART—Stops SmartConfig
3.18 AT+WPS—Enables the WPS Function
3.19 AT+MDNS—Configurates the MDNS Function
3.20 AT+CWJEAP—Connects to an WPA2 Enterprise AP.
3.21 AT+CWHOSTNAME : Configures the Name of ESP Station

4. TCP/IP-Related AT Commands
4.1 AT+CIPSTATUS—Gets the Connection Status

4.2 AT+CIPDOMAIN—Domain Name Resolution Function
4.3 AT+CIPSTART—Establishes TCP Connection, UDP Transmission or SSL Connection

4.3.1 Establish TCP Connection
4.3.2 Establish UDP Transmission
4.3.3 Establish SSL Connection

4.4 AT+CIPSTARTEX—Establishes TCP connection, UDP transmission or SSL connection with
automatically assigned ID
4.5 AT+CIPSEND—Sends Data
4.6 AT+CIPSENDEX—Sends Data
4.7 AT+CIPCLOSE—Closes TCP/UDP/SSL Connection
4.8 AT+CIFSR—Gets the Local IP Address
4.9 AT+CIPMUX—Enables/Disables Multiple Connections
4.10 AT+CIPSERVER—Deletes/Creates TCP or SSL Server
4.11 AT+CIPSERVERMAXCONN—Set the Maximum Connections Allowed by Server
4.12 AT+CIPMODE—Configures the Transmission Mode
4.13 AT+SAVETRANSLINK—Saves the Transparent Transmission Link in Flash

4.13.1 Save TCP Single Connection in Flash
4.13.2 Save UDP Transmission in Flash

4.14 AT+CIPSTO—Sets the TCP Server Timeout
4.15 AT+CIPSNTPCFG—Sets the Time Zone and the SNTP Server
4.16 AT+CIPSNTPTIME—Queries the SNTP Time
4.17 AT+CIUPDATE—Updates the Software Through Wi-Fi
4.18 AT+CIPDINFO—Shows the Remote IP and Port with "+IPD"
4.19 +IPD—Receives Network Data
4.20 AT+CIPSSLCCONF—Config SSL client
4.21 AT+CIPRECONNINTV—Set Wi-Fi transparent transmitting auto-connect interval
4.22 +IPD—Receives Network Data
4.23 AT+CIPRECVMODE—Set Socket Receive Mode
4.24 AT+CIPRECVDATA—Get Socket Data in Passive Receive Mode
4.25 AT+CIPRECVLEN—Get Socket Data Length in Passive Receive Mode
4.26 AT+PING: Ping Packets
4.27 AT+CIPDNS : Configures Domain Name System.

5. [ESP32 Only] BLE-Related AT Commands
5.1 [ESP32 Only] AT+BLEINIT—BLE Initialization
5.2 [ESP32 Only] AT+BLEADDR—Sets BLE Device's Address
5.3 [ESP32 Only] AT+BLENAME—Sets BLE Device's Name
5.4 [ESP32 Only] AT+BLESCANPARAM—Sets Parameters of BLE Scanning
5.5 [ESP32 Only] AT+BLESCAN—Enables BLE Scanning
5.6 [ESP32 Only] AT+BLESCANRSPDATA—Sets BLE Scan Response
5.7 [ESP32 Only] AT+BLEADVPARAM—Sets Parameters of Advertising
5.8 [ESP32 Only] AT+BLEADVDATA—Sets Advertising Data
5.9 [ESP32 Only] AT+BLEADVSTART—Starts Advertising
5.10 [ESP32 Only] AT+BLEADVSTOP—Stops Advertising
5.11 [ESP32 Only] AT+BLECONN—Establishes BLE connection
5.12 [ESP32 Only] AT+BLEDISCONN—Ends BLE connection
5.13 [ESP32 Only] AT+BLEDATALEN—Sets BLE Data Packet Length
5.14 [ESP32 Only] AT+BLECFGMTU—Sets BLE MTU Length
5.15 [ESP32 Only] AT+BLEGATTSSRVCRE—GATTS Creates Services
5.16 [ESP32 Only] AT+BLEGATTSSRVSTART—GATTS Starts Services
5.17 [ESP32 Only] AT+BLEGATTSSRV—GATTS Discovers Services
5.18 [ESP32 Only] AT+BLEGATTSCHAR—GATTS Discovers Characteristics
5.19 [ESP32 Only] AT+BLEGATTSNTFY—GATTS Notifies of Characteristics
5.20 [ESP32 Only] AT+BLEGATTSIND—GATTS Indicates Characteristics
5.21 [ESP32 Only] AT+BLEGATTSSETATTR—GATTS Sets Characteristic
5.22 [ESP32 Only] AT+BLEGATTCPRIMSRV—GATTC Discovers Primary Services
5.23 [ESP32 Only] AT+BLEGATTCINCLSRV—GATTC Discovers Included Services
5.24 [ESP32 Only] AT+BLEGATTCCHAR—GATTC Discovers Characteristics
5.25 [ESP32 Only] AT+BLEGATTCRD—GATTC Reads a Characteristic

5.26 [ESP32 Only] AT+BLEGATTCWR—GATTC Writes Characteristic
5.27 [ESP32 Only] AT+BLESPPCFG—Sets BLE spp parameters
5.28 [ESP32 Only] AT+BLESPP—Enter BLE spp mode
5.29 [ESP32 Only] AT+BLESECPARAM—Set BLE encryption parameters
5.30 [ESP32 Only] AT+BLEENC—Initiate BLE encryption request
5.31 [ESP32 Only] AT+BLEENCRSP—Grant security request access
5.32 [ESP32 Only] AT+BLEKEYREPLY—Reply the key value to the peer device in the lagecy
connection stage
5.33 [ESP32 Only] AT+BLECONFREPLY—Reply the comfirm value to the peer device in the lagecy
connection stage
5.34 [ESP32 Only] AT+BLEENCDEV—Query BLE encryption device list
5.35 [ESP32 Only] AT+BLEENCCLEAR—Clear BLE encryption device list
5.36 ESP32 Only(#BLE-AT)—Set BLE static pair key
5.37 ESP32 Only(#BLE-AT)—BLE HID device profile initialization
5.38 ESP32 Only(#BLE-AT)—Send BLE HID Keyboard information
5.39 ESP32 Only(#BLE-AT)—Send BLE HID mouse information
5.40 ESP32 Only(#BLE-AT)—Send BLE HID consumer information

6. [ESP32 Only] BLE AT Example
7 [ESP32 Only] ETH AT Commands

7.1 [ESP32 Only] AT+CIPETHMAC—Sets the MAC Address of the ESP32 Ethernet
7.2 [ESP32 Only] AT+CIPETH—Sets the IP Address of the ESP32 Ethernet

8. [ESP32 Only] BT-Related AT Commands
8.1 [ESP32 Only] AT+BTINIT—Classic Bluetooth initialization
8.2 [ESP32 Only] AT+BTNAME—Sets BT device's name
8.3 [ESP32 Only] AT+BTSCANMODE—Sets BT SCAN mode
8.4 [ESP32 Only] AT+BTSTARTDISC—Start BT discovery
8.5 [ESP32 Only] AT+BTSPPINIT—Classic Bluetooth SPP profile initialization
8.6 [ESP32 Only] AT+BTSPPCONN—Establishes SPP connection
8.7 [ESP32 Only] AT+BTSPPDISCONN—Ends SPP connection
8.8 [ESP32 Only] AT+BTSPPSEND—Sends data to remote classic bluetooth spp device
8.9 [ESP32 Only] AT+BTSPPSTART—Start the classic bluetooth SPP profile.
8.10 [ESP32 Only] AT+BTA2DPINIT—Classic Bluetooth A2DP profile initialization
8.11 [ESP32 Only] AT+BTA2DPCONN—Establishes A2DP connection
8.12 [ESP32 Only] AT+BTA2DPDISCONN—Ends A2DP connection
8.13 [ESP32 Only] AT+BTA2DPSRC—Set or query the audio file URL
8.14 [ESP32 Only] AT+BTA2DPCTRL—control the audio play
8.15 [ESP32 Only] AT+BTSECPARAM—Set and query the Classic Bluetooth security parameters
8.16 [ESP32 Only] AT+BTKEYREPLY—Input Simple Pair Key
8.17 [ESP32 Only] AT+BTPINREPLY—Input the Legacy Pair PIN Code
8.18 [ESP32 Only] AT+BTSECCFM—Reply the confirm value to the peer device in the legacy
connection stage
8.19 [ESP32 Only] AT+BTENCDEV—Query BT encryption device list
8.20 [ESP32 Only] AT+BTENCCLEAR—Clear BT encryption device list

9.[ESP32 Only] MQTT AT Commands List
9.1 AT+MQTTUSERCFG - Set MQTT User Config
9.2 AT+MQTTCONNCFG - Set configuration of MQTT Connection
9.3 AT+MQTTCONN - Connect to MQTT Broker
9.4 AT+MQTTPUB - Publish MQTT message in string
9.5 AT+MQTTPUBRAW - Publish MQTT message in binary
9.6 AT+MQTTSUB - Subscribe to MQTT Topic
9.7 AT+MQTTUNSUB - Unsubscribe from MQTT Topic
9.8 AT+MQTTCLEAN - Close the MQTT Connection
9.9 MQTT Error Codes
9.10 MQTT Notes
9.11 Example 1: MQTT over TCP (with a Local MQTT Broker)
9.12 Example 2: MQTT over TLS (with a Local MQTT Broker)
9.13 Example 3: MQTT over WSS

10. HTTP AT Command

10.1 AT+HTTPCLIENT-Send HTTP Client Request
10.2 HTTP Error Code

Appendix. How to generate an ESP8266 AT firmware

ESP AT Commands Set
Here is a list of AT commands. Some of the AT commands can only work on the ESP32, which will
be marked as [ESP32 Only]; others can work on both the ESP8266 and ESP32.

P.S. How to generate an ESP8266 AT firmware.

1. AT Commands List

1.1 Basic AT Commands List

AT : Tests AT startup.
AT+RST : Restarts a module.
AT+GMR : Checks version information.
AT+GSLP : Enters Deep-sleep mode.
ATE : Configures echoing of AT commands.
AT+RESTORE : Restores the factory default settings of the module.
AT+UART_CUR : Current UART configuration.
AT+UART_DEF : Default UART configuration, saved in flash.
AT+SLEEP : Sets the sleep mode.
AT+SYSRAM : Checks the remaining space of RAM.
AT+SYSMSG : Set message format.
AT+RFPOWER : Set RF TX Power.
[ESP32 Only] AT+SYSFLASH : Set User Partitions in Flash.
[ESP32 Only] AT+FS : Filesystem Operations.
AT+SYSROLLBACK : Roll back to the previous firmware.
AT+SYSTIMESTAMP: Set local time stamp.
AT+SYSLOG : Enable or disable the AT error code prompt.
AT+SYSLSPCFG : Config the light-sleep wakeup source.
AT+SYSLSP : Enters light-sleep mode.

1.2 Wi-Fi AT Commands List

AT+CWMODE : Sets the Wi-Fi mode (STA/AP/STA+AP).
AT+CWJAP : Connects to an AP.
AT+CWLAPOPT : Sets the configuration of command AT+CWLAP.
AT+CWLAP : Lists available APs.
AT+CWQAP : Disconnects from the AP.
AT+CWSAP : Sets the configuration of the ESP SoftAP.
AT+CWLIF : Gets the Station IP to which the ESP SoftAP is connected.
AT+CWQIF : Disconnect Station from the ESP SoftAP.
AT+CWDHCP : Enables/disables DHCP.
AT+CWDHCPS : Sets the IP range of the ESP SoftAP DHCP server. Saves the setting in flash.
AT+CWAUTOCONN : Connects to the AP automatically on power-up.
AT+CIPSTAMAC : Sets the MAC address of ESP Station.
AT+CIPAPMAC : Sets the MAC address of ESP SoftAP.

af://n2
af://n4
af://n6
af://n47

AT+CIPSTA : Sets the IP address of ESP Station.
AT+CIPAP : Sets the IP address of ESP SoftAP.
AT+CWSTARTSMART : Starts SmartConfig.
AT+CWSTOPSMART : Stops SmartConfig.
AT+WPS : Enables the WPS function.
AT+MDNS : Configurates the MDNS function
[ESP32 Only] AT+CWJEAP : Connects to a WPA2 Enterprise AP.
AT+CWHOSTNAME : Configures the Name of ESP Station

1.3 TCP/IP-Related AT Commands List

AT+CIPSTATUS : Gets the connection status.
AT+CIPDOMAIN : Domain Name Resolution Function.
AT+CIPSTART : Establishes TCP connection, UDP transmission or SSL connection.
AT+CIPSTARTEX : Establishes TCP connection, UDP transmission or SSL connection with
automatically assigned ID.
AT+CIPSEND : Sends data.
AT+CIPSENDEX : Sends data when length of data is <length>, or when \0 appears in the data.
AT+CIPCLOSE : Closes TCP/UDP/SSL connection.
AT+CIFSR : Gets the local IP address.
AT+CIPMUX : Configures the multiple connections mode.
AT+CIPSERVER : Deletes/Creates TCP or SSL server.
AT+CIPSERVERMAXCONN : Set the Maximum Connections Allowed by Server.
AT+CIPMODE : Configures the transmission mode.
AT+SAVETRANSLINK : Saves the transparent transmission link in flash.
AT+CIPSTO : Sets timeout when ESP32 runs as a TCP server.
AT+CIPSNTPCFG : Configures the time domain and SNTP server.
AT+CIPSNTPTIME : Queries the SNTP time.
AT+CIUPDATE : Updates the software through Wi-Fi.
AT+CIPDINFO : Shows remote IP and remote port with +IPD.
AT+CIPSSLCCONF : Config SSL client.
AT+CIPRECONNINTV: Set Wi-Fi transparent transmitting auto-connect interval.
AT+CIPRECVMODE: Set Socket Receive Mode.
AT+CIPRECVDATA: Get Socket Data in Passive Receive Mode.
AT+CIPRECVLEN: Get Socket Data Length in Passive Receive Mode.
AT+PING: Ping Packets
AT+CIPDNS : Configures Domain Name System. The configuration will be saved in flash.

1.4 [ESP32 Only] BLE AT Commands List

Download BLE Spec (ESP32 supports Core Version 4.2)

[ESP32 Only] AT+BLEINIT : Bluetooth Low Energy (BLE) initialization
[ESP32 Only] AT+BLEADDR : Sets BLE device's address
[ESP32 Only] AT+BLENAME : Sets BLE device's name
[ESP32 Only] AT+BLESCANPARAM : Sets parameters of BLE scanning
[ESP32 Only] AT+BLESCAN : Enables BLE scanning
[ESP32 Only] AT+BLESCANRSPDATA : Sets BLE scan response
[ESP32 Only] AT+BLEADVPARAM : Sets parameters of BLE advertising
[ESP32 Only] AT+BLEADVDATA : Sets BLE advertising data
[ESP32 Only] AT+BLEADVSTART : Starts BLE advertising
[ESP32 Only] AT+BLEADVSTOP : Stops BLE advertising
[ESP32 Only] AT+BLECONN : Establishes BLE connection

af://n92
af://n145
https://www.bluetooth.com/specifications/adopted-specifications

[ESP32 Only] AT+BLEDISCONN : Ends BLE connection
[ESP32 Only] AT+BLEDATALEN : Sets BLE data length
[ESP32 Only] AT+BLECFGMTU : Sets BLE MTU length
[ESP32 Only] AT+BLEGATTSSRVCRE : Generic Attributes Server (GATTS) creates services
[ESP32 Only] AT+BLEGATTSSRVSTART : GATTS starts services
[ESP32 Only] AT+BLEGATTSSRV : GATTS discovers services
[ESP32 Only] AT+BLEGATTSCHAR : GATTS discovers characteristics
[ESP32 Only] AT+BLEGATTSNTFY : GATTS notifies of characteristics
[ESP32 Only] AT+BLEGATTSIND : GATTS indicates characteristics
[ESP32 Only] AT+BLEGATTSSETATTR : GATTS sets attributes
[ESP32 Only] AT+BLEGATTCPRIMSRV : Generic Attributes Client (GATTC) discovers primary
services
[ESP32 Only] AT+BLEGATTCINCLSRV : GATTC discovers included services
[ESP32 Only] AT+BLEGATTCCHAR : GATTC discovers characteristics
[ESP32 Only] AT+BLEGATTCRD : GATTC reads characteristics
[ESP32 Only] AT+BLEGATTCWR : GATTC writes characteristics
[ESP32 Only] AT+BLESPPCFG : Sets BLE spp parameters
[ESP32 Only] AT+BLESPP : Enter BLE spp mode
[ESP32 Only] AT+BLESECPARAM : Set BLE encryption parameters
[ESP32 Only] AT+BLEENC : Initiate BLE encryption request
[ESP32 Only] AT+BLEENCRSP : Grant security request access.
[ESP32 Only] AT+BLEKEYREPLY : Reply the key value to the peer device in the lagecy
connection stage.
[ESP32 Only] AT+BLECONFREPLY : Reply the comfirm value to the peer device in the lagecy
connection stage.
[ESP32 Only] AT+BLEENCDEV : Query BLE encryption device list
[ESP32 Only] AT+BLEENCCLEAR : Clear BLE encryption device list
[ESP32 Only] AT+BLESETKEY : Set BLE static pair key
[ESP32 Only] AT+BLEHIDINIT : BLE HID device profile initialization
[ESP32 Only] AT+BLEHIDKB : Send BLE HID Keyboard information
[ESP32 Only] AT+BLEHIDMUS : Send BLE HID mouse information
[ESP32 Only] AT+BLEHIDCONSUMER : Send BLE HID consumer information
[ESP32 Only] BLE AT Examples

1.5 [ESP32 Only] ETH AT Commands List

[ESP32 Only] AT+CIPETHMAC : Sets the MAC address of ESP32 Ethernet.
[ESP32 Only] AT+CIPETH : Sets the IP address of ESP32 Ethernet.

1.6 [ESP32 Only] BT AT Commands List

Download BlueTooth Spec (ESP32 supports Core Version 4.2)

[ESP32 Only] AT+BTINIT : Classic Bluetooth initialization
[ESP32 Only] AT+BTNAME : Sets BT device's name
[ESP32 Only] AT+BTSCANMODE : Sets BT SCAN mode
[ESP32 Only] AT+BTSTARTDISC : Start BT discovery
[ESP32 Only] AT+BTSPPINIT : Classic Bluetooth SPP profile initialization
[ESP32 Only] AT+BTSPPCONN : Establishes SPP connection
[ESP32 Only] AT+BTSPPDISCONN : Ends SPP connection
[ESP32 Only] AT+BTSPPSTART : Start Classic Bluetooth SPP profile
[ESP32 Only] AT+BTSPPSEND : Sends data to remote bt spp device
[ESP32 Only] AT+BTA2DPINIT : Classic Bluetooth A2DP profile initialization

af://n231
af://n238
https://www.bluetooth.com/specifications/adopted-specifications

[ESP32 Only] AT+BTA2DPCONN : Establishes A2DP connection
[ESP32 Only] AT+BTA2DPDISCONN : Ends A2DP connection
[ESP32 Only] AT+BTA2DPSRC : Set or query the audio file URL
[ESP32 Only] AT+BTA2DPCTRL : control the audio play
[ESP32 Only] AT+BTSECPARAM :Set and query the Classic Bluetooth security parameters
[ESP32 Only] AT+BTKEYREPLY :Input the Simple Pair Key
[ESP32 Only] AT+BTPINREPLY :Input the Legacy Pair PIN Code
[ESP32 Only] AT+BTSECCFM: Reply the confirm value to the peer device in the legacy
connection stage
[ESP32 Only] AT+BTENCDEV : Query BT encryption device list
[ESP32 Only] AT+BTENCCLEAR : Clear BT encryption device list

1.7 [ESP32 Only] MQTT AT Commands List

[ESP32 Only] AT+MQTTUSERCFG : Set MQTT User Config
[ESP32 Only] AT+MQTTCONNCFG : Set configuration of MQTT Connection
[ESP32 Only] AT+MQTTCONN : Connect to MQTT Broker
[ESP32 Only] AT+MQTTPUB : Publish MQTT Data in string
[ESP32 Only] AT+MQTTPUBRAW : Publish MQTT message in binary
[ESP32 Only] AT+MQTTSUB : Subscribe to MQTT Topic
[ESP32 Only] AT+MQTTUNSUB : Unsubscribe from MQTT Topic
[ESP32 Only] AT+MQTTCLEAN : Close the MQTT Connection
[ESP32 Only] MQTT Error Codes
[ESP32 Only] MQTT Notes
[ESP32 Only] Example 1: MQTT over TCP
[ESP32 Only] Example 2: MQTT over TLS
[ESP32 Only] Example 3: MQTT over WSS

1.8 HTTP AT Command List

AT+HTTPCLIENT - Send HTTP Client Request
HTTP AT Error Code

2. Basic AT Commands

2.1 AT—Tests AT Startup

Execute Command:

Response:

2.2 AT+RST—Restarts the Module

Execute Command:

Response:

AT

OK

AT+RST

af://n282
af://n311
af://n318
af://n320
af://n326

2.3 AT+GMR—Checks Version Information

Execute Command:

Response:

Parameters:

<AT version info>: information about the AT version.
<SDK version info>: information about the SDK version.
<compile time>: the duration of time for compiling the BIN.

2.4 AT+GSLP—Enters Deep-sleep Mode

Set Command:

Response:

Parameters:

<time>: the duration of ESP32’s sleep. Unit: ms.
ESP32 will wake up after Deep-sleep for as many milliseconds (ms) as <time> indicates.

2.5 ATE—AT Commands Echoing

Execute Command:

Response:

Parameters:

ATE0: Switches echo off.
ATE1: Switches echo on.

OK

AT+GMR

<AT version info>

<SDK version info>

<compile time>

OK

AT+GSLP=<time>

<time>

OK

ATE

OK

af://n332
af://n346
af://n356

2.6 AT+RESTORE—Restores the Factory Default Settings

Execute Command:

Response:

Note:

The execution of this command will reset all parameters saved in flash, and restore the
factory default settings of the module.
The chip will be restarted when this command is executed.

2.7 AT+UART_CUR—Current UART Configuration, Not Saved
in Flash

Query Command:

Response:

Note:

Command AT+UART_CUR? will return the actual value of UART configuration parameters,
which may have allowable errors compared with the set value because of the clock division.

Set Command:

Response:

Parameters:

<baudrate>: UART baud rate

<databits>: data bits

5: 5-bit data
6: 6-bit data
7: 7-bit data
8: 8-bit data

<stopbits>: stop bits

1: 1-bit stop bit

AT+RESTORE

OK

AT+UART_CUR?

+UART_CUR:<baudrate>,<databits>,<stopbits>,<parity>,<flow control>

OK

AT+UART_CUR=<baudrate>,<databits>,<stopbits>,<parity>,<flow control>

OK

af://n368
af://n380

2: 1.5-bit stop bit
3: 2-bit stop bit

<parity>: parity bit

0: None
1: Odd
2: Even

<flow control>: flow control

0: flow control is not enabled
1: enable RTS
2: enable CTS
3: enable both RTS and CTS

Notes:

The configuration changes will NOT be saved in flash.

The use of flow control requires the support of hardware:

IO15 is UART0 CTS
IO14 is UART0 RTS

The range of baud rates supported: 80 ~ 5000000.

Example:

2.8 AT+UART_DEF—Default UART Configuration, Saved in
Flash

Query Command:

Response:

Set Command:

Response:

Parameters:

<baudrate>: UART baud rate

<databits>: data bits

5: 5-bit data
6: 6-bit data

AT+UART_CUR=115200,8,1,0,3

AT+UART_DEF?

+UART_DEF:<baudrate>,<databits>,<stopbits>,<parity>,<flow control>

OK

AT+UART_DEF=<baudrate>,<databits>,<stopbits>,<parity>,<flow control>

OK

af://n453

7: 7-bit data
8: 8-bit data

<stopbits>: stop bits

1: 1-bit stop bit
2: 1.5-bit stop bit
3: 2-bit stop bit

<parity>: parity bit

0: None
1: Odd
2: Even

<flow control>: flow control

0: flow control is not enabled
1: enable RTS
2: enable CTS
3: enable both RTS and CTS

Notes:

The configuration changes will be saved in the NVS area, and will still be valid when the chip
is powered on again.

The use of flow control requires the support of hardware:

IO15 is UART0 CTS
IO14 is UART0 RTS

The range of baud rates supported: 80 ~ 5000000.

Example:

2.9 AT+SLEEP—Sets the Sleep Mode

Set Command:

Response:

Parameters:

<sleep mode>:

0: disable the sleep mode.
1: Modem-sleep mode.

Example:

2.10 AT+SYSRAM—Checks the Remaining Space of RAM

AT+UART_DEF=115200,8,1,0,3

AT+SLEEP=<sleep mode>

OK

AT+SLEEP=0

af://n522
af://n539

Query Command:

Response:

Parameters:

<remaining RAM size>: remaining space of RAM, unit: byte

Example:

2.11 AT+SYSMSG—Control to use new or old information

Query Command:

Response:

Set Command:

Response:

Parameters:

<state>:

Bit0: Quit transparent transmission
0: Quit transparent transmission no information.
1: Quit transparent transmission will supply information.
Bit1: Connection info
0: Use old connection info.
1: Use new connection info.

Notes:

AT+SYSRAM?

+SYSRAM:<remaining RAM size>

OK

AT+SYSRAM?

+SYSRAM:148408

OK

AT+SYSMSG?

Function:

Query the current system message state.

+SYSMSG:<state>

OK

AT+SYSMSG=<state>

Function:

Control to use new or old information.

OK

af://n551

The configuration changes will be saved in the NVS area.

If set Bit0 to 1 will supply information "+QUITT" when quit transparent transmission.

If set Bit1 to 1 will impact the infomation of command AT+CIPSTART and AT+CIPSERVER ,

It will supply "+LINK_CONN :
status_type,link_id,ip_type,terminal_type,remote_ip,remote_port,local_port" instead of
"XX,CONNECT".
Example:

// Use new connection info and quit transparent transmission no information
AT+SYSMSG=2

2.12 [ESP32 Only] AT+SYSFLASH—Set User Partitions in Flash

Query Command:

Response:

Set Command:

Response:

Parameters:

<operation>:

0: erase sector
1: write data into the user partition
2: read data from the user partition

<partition>: name of user partition

<offset>: offset of user partition

<length>: data length

<type>: type of user partition

<subtype>: subtype of user partition

<addr>: address of user partition

<size>: size of user partition

Notes:

AT+SYSFLASH?

Function:

Check the user partitions in flash.

+SYSFLASH:<partition>,<type>,<subtype>,<addr>,<size>

OK

AT+SYSFLASH=<operation>,<partition>,<offset>,<length>

Function:

Read/write the user partitions in flash.

+SYSFLASH:<length>,<data>

OK

af://n582

at_customize.bin has to be downloaded, so that the relevant commands can be used. Please
refer to the ESP32_Customize_Partitions for more details.

Important things to note when erasing user partitions:

When erasing the targeted user partition in its entirety, parameters <offset> and
<length> can be omitted. For example, command AT+SYSFLASH=0,"ble_data" can
erase the entire "ble_data" user partition.
If parameters <offset> and <length> are not omitted when erasing the user
partition, they have to be 4KB-aligned.

The introduction to partitions is in ESP-IDF Partition Tables.

If the operator is write, wrap return > after the write command, then you can send the
actual data, which length is parameter <length> .

Example:

2.13 [ESP32 Only] AT+FS—Filesystem Operations

Set Command:

Response:

Parameters:

<type>: only FATFS is currently supported

0: FATFS
<operation>:

0: delete file
1: write file
2: read file
3: query the size of the file
4: list files in a specific directory, only root directory is currently supported

<offset>: offset, for writing and reading operations only

<length>: data length, for writing and reading operations only

Notes:

at_customize.bin has to be downloaded, so that the relevant commands can be used. The
definitions of user partitions are in esp-at/at_customize.csv. Please refer to the
ESP32_Customize_Partitions for more details.
If the length of the read data is greater than the actual file length, only the actual data length
of the file will be returned.

// read 100 bytes from the "ble_data" partition offset 0.

AT+SYSFLASH=2,"ble_data",0,100

// write 10 bytes to the "ble_data" partition offset 100.

AT+SYSFLASH=1,"ble_data",100,10

// erase 8192 bytes from the "ble_data" partition offset 4096.

AT+SYSFLASH=0,"ble_data",4096,8192

AT+FS=<type>,<operation>,<filename>,<offset>,<length>

OK

https://github.com/espressif/esp-at/tree/master/docs
http://esp-idf.readthedocs.io/en/latest/api-guides/partition-tables.html
af://n634
https://github.com/espressif/esp-at/tree/master/docs

If the operator is write, wrap return > after the write command, then you can send the
actual data, which length is parameter <length> .

Example:

2.14 AT+RFPOWER-Set RF TX Power

Query Command:

Response:

Set Command:

Response:

Parameters:

<wifi_power>: range [40, 82], the unit is 0.25dBm, for example, if the value is 78, then RF
max power is 78*0.25 dBm=19.5dBm

<ble_adv_power>: RF TX Power of BLE advertising, range: [0, 7]

0:7dBm
1:4dBm
2:1dBm
3:-2 dBm
4:-5 dBm
5:-8 dBm
6:-11 dBm
7:-14 dBm

<ble_scan_power>: RF TX Power of BLE scanning, range: [0, 7], the same as
<ble_adv_power>

<ble_conn_power>: RF TX Power of BLE connecting, range: [0, 7], the same as
<ble_adv_power>

// delete a file.

AT+FS=0,0,"filename"

// write 10 bytes to offset 100 of a file.

AT+FS=0,1,"filename",100,10

// read 100 bytes from offset 0 of a file.

AT+FS=0,2,"filename",0,100

// list all files in the root directory.

AT+FS=0,4,"."

AT+RFPOWER?

Function: to query the RF TX Power.

+RFPOWER:<wifi_power>,<ble_adv_power>,<ble_scan_power>,<ble_conn_power>

OK

AT+RFPOWER=<wifi_power>[,<ble_adv_power>,<ble_scan_power>,<ble_conn_power>]

OK

af://n674

Notes: Since the RF TX power is actually divided into several levels, and each level has its own
value range, so the wifi_power value queried by the esp_wifi_get_max_tx_power may differ
from the value set by esp_wifi_set_max_tx_power . And the query value will not be larger than
the set one.

2.15 AT+SYSROLLBACK-Roll back to the previous firmware

Execute Command:

Response:

Note:

This command will not upgrade via OTA, only roll back to the firmware which is in the other
ota partition.

2.16 AT+SYSTIMESTAMP—Set local time stamp.

Query Command:

Response:

Set Command:

Response:

Parameters:

<Unix_timestamp>: Unix timestamp, the unit is seconds.

Example:

2.17 AT+SYSLOG : Enable or disable the AT error code
prompt.

AT+SYSROLLBACK

OK

AT+SYSTIMESTAMP?

Function: to query the time stamp.

+SYSTIMESTAMP:<Unix_timestamp>

OK

AT+SYSTIMESTAMP=<Unix_timestamp>

Function: to set local time stamp. It will be the same as SNTP time when the

SNTP time updated.

OK

AT+SYSTIMESTAMP=1565853509 //2019-08-15 15:18:29

af://n712
af://n722
af://n738

Query Command:

Response:

Set Command:

Response:

Parameters:

<status>: : enable or disable

0: disable
1: enable

Example:
If enable AT error code prompt:

If disable AT error code prompt:

2.18 AT+SYSLSP—Enters light-sleep mode (Only Support
ESP32)

AT+SYSLOG?

Function: to query the AT error code prompt for whether it is enabled or

disabled.

+SYSLOG:<status>

OK

AT+SYSLOG=<status>

Function: Enable or disable the AT error code prompt.

OK

AT+SYSLOG=1

OK

AT+FAKE

ERR CODE:0x01090000

ERROR

AT+SYSLOG=0

OK

AT+FAKE

//No `ERR CODE:0x01090000`

ERROR

af://n761

Execute Command:
 AT+SYSLSP
Response:

Example:

2.19 AT+SYSLSPCFG—Config the light-sleep wakeup source
(Only Support ESP32)

Set Command:

Response:

Parameters:

<wakeup source>:

0: Wakeup by timer.
1: Wakeup by UART.
2: Wakeup by GPIO.

<param>:

If the wakeup source is timer, this param is time before wakeup, the units is
millisecond.
If the wakeup source is UART. this param is the Uart number.
If the wakeup source is GPIO, the param is the GPIO number.

<wakeup level>: only for wakeup source GPIO, 0: Low level, 1: High level.

Example:

3 Wi-Fi AT Commands

3.1 AT+CWMODE—Sets the Wi-Fi Mode
(Station/SoftAP/Station+SoftAP)

Query Command:

OK

AT+SYSLSP

AT+SYSLSPCFG=<wakeup source>,<param>[,<wakeup level>]

OK

AT+SYSLSPCFG=0,1000 // Timer wakeup

AT+SYSLSPCFG=1,1 // Uart1 wakeup

AT+SYSLSPCFG=2,12,1 // GPIO12 wakeup, high level

AT+CWMODE?

Function: to query the Wi-Fi mode of ESP32.

af://n767
af://n796
af://n798

Response:

Set Command:

Response:

Parameters:

<mode>:

0: Null mode, WiFi RF will be disabled
1: Station mode
2: SoftAP mode
3: SoftAP+Station mode

Note:

The configuration changes will be saved in the NVS area.

Example:

3.2 AT+CWJAP—Connects to an AP

Query Command:

Response:

Parameters:

<ssid>: a string parameter showing the SSID of the AP.
<bssid>: the AP’s MAC address.
<channel>: channel
<rssi>: signal strength

Set Command:

+CWMODE:<mode>

OK

AT+CWMODE=<mode>

Function: to set the Wi-Fi mode of ESP32.

OK

AT+CWMODE=3

AT+CWJAP?

Function: to query the AP to which the ESP32 Station is already connected.

+CWJAP:<ssid>,<bssid>,<channel>,<rssi>

OK

AT+CWJAP=<ssid>,<pwd>[,<bssid>][,<pci_en>][,<reconn>][,<listen_interval>]

Function: to set the AP to which the ESP32 Station needs to be connected.

af://n827

Response:

or
 +CWJAP:
 ERROR
Parameters:

<ssid>: the SSID of the target AP.

Escape character syntax is needed if SSID or password contains any special characters,
such as , or " or \.

<pwd>: password, MAX: 64-byte ASCII.

[<bssid>]: the target AP's MAC address, used when multiple APs have the same SSID.

[<pci_en>]: enable PCI Authentication, which will disable connect OPEN and WEP AP.

[<reconn>]: enable Wi-Fi reconnection, when beacon timeout, ESP32 will reconnect
automatically.

[<listen_interval>]: the interval of listening to the AP's beacon,the range is (0,100],

<error code>: (for reference only)

1: connection timeout.
2: wrong password.
3: cannot find the target AP.
4: connection failed.
others: unknown error occurred.

Note:

The configuration changes will be saved in the NVS area.
This command requires Station mode to be active.

Examples:

3.3 AT+CWLAPOPT—Sets the Configuration for the Command
AT+CWLAP

Set Command:

Response:

OK

AT+CWJAP="abc","0123456789"

For example, if the target AP's SSID is "ab\,c" and the password is

"0123456789"\", the command is as follows:

AT+CWJAP="ab\\\,c","0123456789\"\\"

If multiple APs have the same SSID as "abc", the target AP can be found by

BSSID:

AT+CWJAP="abc","0123456789","ca:d7:19:d8:a6:44"

AT+CWLAPOPT=<sort_enable>,<mask>

OK

af://n885

Parameters:

<sort_enable>: determines whether the result of command AT+CWLAP will be listed
according to RSSI:

0: the result is not ordered according to RSSI.
1: the result is ordered according to RSSI.

<mask>: determines the parameters shown in the result of AT+CWLAP ;

0 means not showing the parameter corresponding to the bit, and 1 means showing it.
bit 0: determines whether <ecn> will be shown in the result of AT+CWLAP .
bit 1: determines whether <ssid> will be shown in the result of AT+CWLAP .
bit 2: determines whether <rssi> will be shown in the result of AT+CWLAP .
bit 3: determines whether <mac> will be shown in the result of AT+CWLAP .
bit 4: determines whether <channel> will be shown in the result of AT+CWLAP .

Example:

3.4 AT+CWLAP—Lists the Available APs

Set Command:

Execute Command:

Response:

Parameters:

<ecn>: encryption method.

0: OPEN
1: WEP
2: WPA_PSK
3: WPA2_PSK
4: WPA_WPA2_PSK
5: WPA2_Enterprise (AT can NOT connect to WPA2_Enterprise AP for now.)

<ssid>: string parameter, SSID of the AP.

<rssi>: signal strength.

<mac>: string parameter, MAC address of the AP.

AT+CWLAPOPT=1,31

The first parameter is 1, meaning that the result of the command AT+CWLAP will

be ordered according to RSSI;

The second parameter is 31, namely 0x1F, meaning that the corresponding bits of

<mask> are set to 1. All parameters will be shown in the result of AT+CWLAP.

AT+CWLAP=[<ssid>,<mac>,<channel>,<scan_type>,<scan_time_min>,<scan_time_max>]

Function: to query the APs with specific SSID and MAC on a specific channel.

AT+CWLAP

Function: to list all available APs.

+CWLAP:<ecn>,<ssid>,<rssi>,<mac>,<channel>

OK

af://n917

<scan_type>: Wi-Fi scan type, active or passive.

0: active scan
1: passive scan

<scan_time_min>: minimum active scan time per channel, units: millisecond, range
[0,1500], if the scan type is passive, this param is invalid.

<scan_time_max>: maximum active scan time per channel, units: millisecond, range
[0,1500]. if this param is zero, the firmware will use the default time, active scan type is
120ms , passive scan type is 360ms.

Examples:

3.5 AT+CWQAP—Disconnects from the AP

Execute Command:

Response:

3.6 AT+CWSAP—Configuration of the ESP32 SoftAP

Query Command:

Response:

Set Command:

Response:

Parameters:

<ssid>: string parameter, SSID of AP.

<pwd>: string parameter, length of password: 8 ~ 64 bytes ASCII.

<channel>: channel ID.

AT+CWLAP="Wi-Fi","ca:d7:19:d8:a6:44",6,0,400,1000

Or search for APs with a designated SSID:

AT+CWLAP="Wi-Fi"

AT+CWQAP

OK

AT+CWSAP?

Function: to obtain the configuration parameters of the ESP32 SoftAP.

+CWSAP:<ssid>,<pwd>,<channel>,<ecn>,<max conn>,<ssid hidden>

OK

AT+CWSAP=<ssid>,<pwd>,<chl>,<ecn>[,<max conn>][,<ssid hidden>]

Function: to set the configuration of the ESP32 SoftAP.

OK

af://n961
af://n967

<ecn>: encryption method; WEP is not supported.

0: OPEN
2: WPA_PSK
3: WPA2_PSK
4: WPA_WPA2_PSK

[<max conn>](optional parameter): maximum number of Stations to which ESP32 SoftAP
can be connected; within the range of [1, 10].

[<ssid hidden>](optional parameter):

0: SSID is broadcast. (the default setting)
1: SSID is not broadcast.

Note:

This command is only available when SoftAP is active.
The configuration changes will be saved in the NVS area.

Example:

3.7 AT+CWLIF—IP of Stations to Which the ESP32 SoftAP is
Connected

Execute Command:

Response:

Parameters:

<ip addr>: IP address of Stations to which ESP32 SoftAP is connected.
<mac>: MAC address of Stations to which ESP32 SoftAP is connected.

Note:

This command cannot get a static IP. It only works when both DHCPs of the ESP32 SoftAP,
and of the Station to which ESP32 is connected, are enabled.

3.8 AT+CWQIF—Disconnect Station from the ESP SoftAP

Execute Command:

Response:

AT+CWSAP="ESP32","1234567890",5,3

AT+CWLIF

<ip addr>,<mac>

OK

AT+CWQIF

Function: Disconnect all stations that connected to the ESP SoftAP.

OK

af://n1013
af://n1029

Set Command:

Response:

Parameters:

<mac>: MAC address of the station to disconnect to.

3.9 AT+CWDHCP—Enables/Disables DHCP

Query Command:

Response:
 state

Set Command:

Response:

Parameters:

<operate>:

0: disable
1: enable

<mode>:

Bit0: Station DHCP
Bit1: SoftAP DHCP

<state>:DHCP disabled or enabled now?
Bit0:
 0: Station DHCP is disabled.
 1: Station DHCP is enabled.
Bit1:
 0: SoftAP DHCP is disabled.
 1: SoftAP DHCP is enabled.
Notes:

The configuration changes will be stored in the NVS area.

This set command interacts with static-IP-related AT commands(AT+CIPSTA-related and
AT+CIPAP-related commands):

AT+CWQIF=<mac>

Function: Disconnect the station whose mac is "<mac>" from the ESP SoftAP.

OK

AT+CWDHCP?

AT+CWDHCP=<operate>,<mode>

Function: to enable/disable DHCP.

OK

af://n1043

If DHCP is enabled, static IP will be disabled;
If static IP is enabled, DHCP will be disabled;
Whether it is DHCP or static IP that is enabled depends on the last configuration.

Examples:

3.10 AT+CWDHCPS—Sets the IP Address Allocated by ESP32
SoftAP DHCP (The configuration is saved in Flash.)

Query Command:

Response:

Set Command:

Response:

Parameters:

<enable>:

0: Disable the settings and use the default IP range.
1: Enable setting the IP range, and the parameters below have to be set.

<lease time>: lease time, unit: minute, range [1, 2880].

<start IP>: start IP of the IP range that can be obtained from ESP32 SoftAP DHCP server.

<end IP>: end IP of the IP range that can be obtained from ESP32 SoftAP DHCP server.

Notes:

The configuration changes will be saved in the NVS area.
This AT command is enabled when ESP8266 runs as SoftAP, and when DHCP is enabled.
The IP address should be in the same network segment as the IP address of ESP32 SoftAP.

Examples:

AT+CWDHCP=1,1 //Enable Station DHCP. If the last DHCP mode is 2, then the

current DHCP mode will be 3.

AT+CWDHCP=0,2 //Disable SoftAP DHCP. If the last DHCP mode is 3, then the

current DHCP mode will be 1.

AT+CWDHCPS?

+CWDHCPS=<lease time>,<start IP>,<end IP>

OK

AT+CWDHCPS=<enable>,<lease time>,<start IP>,<end IP>

Function: sets the IP address range of the ESP32 SoftAP DHCP server.

OK

AT+CWDHCPS=1,3,"192.168.4.10","192.168.4.15"

or

AT+CWDHCPS=0 //Disable the settings and use the default IP range.

af://n1083

3.11 AT+CWAUTOCONN—Auto-Connects to the AP or Not

Set Command:

Response:

Parameters:

<enable>:

0: does NOT auto-connect to AP on power-up.
1: connects to AP automatically on power-up.

Note:

The configuration changes will be saved in the NVS area.
The ESP32 Station connects to the AP automatically on power-up by default.

Example:

3.12 AT+CIPSTAMAC—Sets the MAC Address of the ESP32
Station

Query Command:

Response:

Set Command:

Response:

Parameters:

<mac>: string parameter, MAC address of the ESP8266 Station.

Notes:

AT+CWAUTOCONN=<enable>

OK

AT+CWAUTOCONN=1

AT+CIPSTAMAC?

Function: to obtain the MAC address of the ESP32 Station.

+CIPSTAMAC:<mac>

OK

AT+CIPSTAMAC=<mac>

Function: to set the MAC address of the ESP32 Station.

OK

af://n1118
af://n1141

The configuration changes will be saved in the NVS area.

The MAC address of ESP32 SoftAP is different from that of the ESP32 Station. Please make
sure that you do not set the same MAC address for both of them.

Bit 0 of the ESP32 MAC address CANNOT be 1.

For example, a MAC address can be "1a:…" but not "15:…".
FF:FF:FF:FF:FF:FF and 00:00:00:00:00:00 are invalid MAC and cannot be set.

Example:

3.13 AT+CIPAPMAC—Sets the MAC Address of the ESP32
SoftAP

Query Command:

Response:

Set Command:

Response:

Parameters:

<mac>: string parameter, MAC address of the ESP8266 SoftAP.

Notes:

The configuration changes will be saved in the NVS area.

The MAC address of ESP32 SoftAP is different from that of the ESP32 Station. Please make
sure that you do not set the same MAC address for both of them.

Bit 0 of the ESP32 MAC address CANNOT be 1.

For example, a MAC address can be "18:…" but not "15:…".
FF:FF:FF:FF:FF:FF and 00:00:00:00:00:00 are invalid MAC and cannot be set.

Example:

3.14 AT+CIPSTA—Sets the IP Address of the ESP32 Station

AT+CIPSTAMAC="1a:fe:35:98:d3:7b"

AT+CIPAPMAC?

Function: to obtain the MAC address of the ESP32 SoftAP.

+CIPAPMAC:<mac>

OK

AT+CIPAPMAC=<mac>

Function: to set the MAC address of the ESP32 SoftAP.

OK

AT+CIPAPMAC="18:fe:35:98:d3:7b"

af://n1170
af://n1199

Query Command:

Response:

Set Command:

Response:

Parameters:

<ip>: string parameter, the IP address of the ESP32 Station.
[<gateway>]: gateway.
[<netmask>]: netmask.

Notes:

The configuration changes will be saved in the NVS area.

The set command interacts with DHCP-related AT commands (AT+CWDHCP-related
commands):

If static IP is enabled, DHCP will be disabled;
If DHCP is enabled, static IP will be disabled;
Whether it is DHCP or static IP that is enabled depends on the last configuration.

Example:

3.15 AT+CIPAP—Sets the IP Address of the ESP32 SoftAP

Query Command:

Response:

AT+CIPSTA?

Function: to obtain the IP address of the ESP32 Station.

Notice: Only when the ESP32 Station is connected to an AP can its IP address be

queried.

+CIPSTA:<ip>

OK

AT+CIPSTA=<ip>[,<gateway>,<netmask>]

Function: to set the IP address of the ESP32 Station.

OK

AT+CIPSTA="192.168.6.100","192.168.6.1","255.255.255.0"

AT+CIPAP?

Function: to obtain the IP address of the ESP32 SoftAP.

+CIPAP:<ip>,<gateway>,<netmask>

OK

af://n1232

Set Command:

Response:

Parameters:

<ip>: string parameter, the IP address of the ESP32 SoftAP.
[<gateway>]: gateway.
[<netmask>]: netmask.

Notes:

The configuration changes will be saved in the NVS area.

The set command interacts with DHCP-related AT commands (AT+CWDHCP-related
commands):

If static IP is enabled, DHCP will be disabled;
If DHCP is enabled, static IP will be disabled;
Whether it is DHCP or static IP that is enabled depends on the last configuration.

Example:

3.16 AT+CWSTARTSMART—Starts SmartConfig

Execute Command:

Set Command:

Response:

Parameters:

<type>:

1: ESP-TOUCH
2: AirKiss
3: ESP-TOUCH+AirKiss

Notes:

AT+CIPAP=<ip>[,<gateway>,<netmask>]

Function: to set the IP address of the ESP32 SoftAP.

OK

AT+CIPAP="192.168.5.1","192.168.5.1","255.255.255.0"

AT+CWSTARTSMART

Function: to start SmartConfig. (The type of SmartConfig is ESP-TOUCH +

AirKiss.）

AT+CWSTARTSMART=<type>

Function: to start SmartConfig of a designated type.

OK

af://n1265

For details on SmartConfig please see ESP-TOUCH User Guide.
SmartConfig is only available in the ESP32 Station mode.
The message Smart get Wi-Fi info means that SmartConfig has successfully acquired the
AP information. ESP32 will try to connect to the target AP.
Message Smartconfig connected Wi-Fi is printed if the connection is successful.
Use command AT+CWSTOPSMART to stop SmartConfig before running other commands.
Please make sure that you do not execute other commands during SmartConfig.

Example:

3.17 AT+CWSTOPSMART—Stops SmartConfig

Execute Command:

Response:

Note:

Irrespective of whether SmartConfig succeeds or not, before executing any other AT
commands, please always call AT+CWSTOPSMART to release the internal memory taken up by
SmartConfig.

Example:

3.18 AT+WPS—Enables the WPS Function

Set Command:

Response:

Parameters:

<enable>:

1: enable WPS/Wi-Fi Protected Setup (implemented by PBC/Push Button Configuration).
0: disable WPS (implemented by PBC).

Notes:

AT+CWMODE=1

AT+CWSTARTSMART

AT+CWSTOPSMART

OK

AT+CWMODE=1

AT+CWSTARTSMART

AT+CWSTOPSMART

AT+WPS=<enable>

OK

af://n1298
af://n1310

WPS must be used when the ESP32 Station is enabled.
WPS does not support WEP/Wired-Equivalent Privacy encryption.

Example:

3.19 AT+MDNS—Configurates the MDNS Function

Set Command:

Response:

Parameters:

<enable>:

1: enables the MDNS function; the following three parameters need to be set.
0: disables the MDNS function; the following three parameters need not to be set.

<hostname>: MDNS host name

<service_name>: MDNS service name

<port>: MDNS port

Example:

3.20 AT+CWJEAP—Connects to an WPA2 Enterprise AP.

Query Command:

Response:

Set Command:

Response:

AT+CWMODE=1

AT+WPS=1

AT+MDNS=<enable>[,<hostname>,<service_name>,<port>]

OK

AT+MDNS=1,"espressif","_iot",8080

AT+MDNS=0

AT+CWJEAP?

Function: to query the Enterprise AP to which the ESP32 Station is already

connected.

+CWJEAP:<ssid>,<method>,<identity>,<username>,<password>,<security>

OK

AT+CWJEAP=<ssid>,<method>,<identity>,<username>,<password>,<security>

Function: to set the Enterprise AP to which the ESP32 Station needs to be

connected.

af://n1333
af://n1356

or
 +CWJEAP:Timeout
 ERROR
Parameters:

<ssid>: the SSID of the Enterprise AP.

Escape character syntax is needed if SSID or password contains any special characters,
such as , or " or \.

<method>: wpa2 enterprise authentication method.

0: EAP-TLS.
1: EAP-PEAP.
2: EAP-TTLS.

<identity>: identity for phase 1, string limited to 1~32.

<username>: username for phase 2, must set for EAP-PEAP and EAP-TTLS mode, nor care
for EAP-TLS, string limited to 1~32.

<password>: password for phase 2, must set for EAP-PEAP and EAP-TTLS mode, nor care for
EAP-TLS, string limited to 1~32.

<security>:

Bit0: Client certificate
Bit1: Server certificate

Example:

Note:

The configuration changes will be saved in the NVS area.
This command requires Station mode to be active.
TLS mode will use client certificate, make sure enabled.

3.21 AT+CWHOSTNAME : Configures the Name of ESP Station

Query Command:

Response:

OK

1. Connect to EAP-TLS mode enterprise AP, set identity, verify server

certificate and load client certificate

AT+CWJEAP="dlink11111",0,"example@espressif.com",,,3

2. Connect to EAP-PEAP mode enterprise AP, set identity, username and password,

not verify server certificate and not load client certificate

AT+CWJEAP="dlink11111",1,"example@espressif.com","espressif","test11",0

AT+CWHOSTNAME?

Function: Checks the host name of ESP Station.

+CWHOSTNAME:<hostname>

OK

af://n1405

Set Command:

Response:

If the Station mode is not enabled, the command will return:

Parameters:

<hostname>: the host name of the ESP Station, the maximum length is 32 bytes.

Note:

The configuration changes are not saved in the flash.

Example:

4. TCP/IP-Related AT Commands

4.1 AT+CIPSTATUS—Gets the Connection Status

Execute Command:

Response:

Parameters:

<stat>: status of the ESP32 Station interface.

0: The ESP32 station is inactive.
1: The ESP32 station is idle.
2: The ESP32 Station is connected to an AP and its IP is obtained.
3: The ESP32 Station has created a TCP or UDP transmission.
4: The TCP or UDP transmission of ESP32 Station is disconnected.
5: The ESP32 Station does NOT connect to an AP.

<link ID>: ID of the connection (0~4), used for multiple connections.

<type>: string parameter, "TCP" or "UDP".

<remote IP>: string parameter indicating the remote IP address.

<remote port>: the remote port number.

AT+CWHOSTNAME=<hostname>

Function: Sets the host name of ESP Station.

OK

ERROR

AT+CWMODE=3

AT+CWHOSTNAME="my_test"

AT+CIPSTATUS

STATUS:<stat>

+CIPSTATUS:<link ID>,<type>,<remote IP>,<remote port>,<local port>,<tetype>

af://n1426
af://n1428

<local port>: ESP32 local port number.

<tetype>:

0: ESP32 runs as a client.
1: ESP32 runs as a server.

4.2 AT+CIPDOMAIN—Domain Name Resolution Function

Execute Command:

Response:

Parameter:

<domain name>: the domain name.

Example:

4.3 AT+CIPSTART—Establishes TCP Connection, UDP
Transmission or SSL Connection

4.3.1 Establish TCP Connection

Set Command:

Response:

Or if the TCP connection is already established, the response is:
 ALREADY CONNECTTED
 ERROR
Parameters:

<link ID>: ID of network connection (0~4), used for multiple connections.

<type>: string parameter indicating the connection type: "TCP", "UDP" or "SSL".

<remote IP>: string parameter indicating the remote IP address.

<remote port>: the remote port number.

AT+CIPDOMAIN=<domain name>

+CIPDOMAIN:<IP address>

AT+CWMODE=1 // set Station mode

AT+CWJAP="SSID","password" // access to the internet

AT+CIPDOMAIN="iot.espressif.cn" // Domain Name Resolution function

Single TCP connection (AT+CIPMUX=0):

AT+CIPSTART=<type>,<remote IP>,<remote port>[,<TCP keep alive>][,<local IP>]

Multiple TCP Connections (AT+CIPMUX=1):

AT+CIPSTART=<link ID>,<type>,<remote IP>,<remote port>[,<TCP keep alive>][,

<local IP>]

OK

af://n1468
af://n1480
af://n1481

[<TCP keep alive>](optional parameter): detection time interval when TCP is kept alive; this
function is disabled by default.

0: disable TCP keep-alive.
1 ~ 7200: detection time interval; unit: second (s).

[<local IP>](optional parameter): select which IP want to use, this is useful when using both
ethernet and WiFi; this parameter is disabled by default. If you want to use this parameter,
must be specified firstly, null also is valid.

Examples:

4.3.2 Establish UDP Transmission

Set Command:

Response:

Or if the UDP transmission is already established, the response is:
 ALREADY CONNECTTED
 ERROR
Parameters:

<link ID>: ID of network connection (0~4), used for multiple connections.

<type>: string parameter indicating the connection type: "TCP", "UDP" or "SSL".

<remote IP>: string parameter indicating the remote IP address.

<remote port>: remote port number.

[<UDP local port>](optional parameter): UDP port of ESP32.

[<UDP mode>](optional parameter): In the UDP transparent transmission, the value of this
parameter has to be 0.

0: the destination peer entity of UDP will not change; this is the default setting.
1: the destination peer entity of UDP can change once.
2: the destination peer entity of UDP is allowed to change.

[<local IP>](optional parameter): select which IP want to use, this is useful when using both
ethernet and WiFi; this parameter is disabled by default. If you want to use this parameter,
and must be specified firstly, null also is valid.

Notice:

To use parameter <UDP mode> , parameter <UDP local port> must be set first.

AT+CIPSTART="TCP","iot.espressif.cn",8000

AT+CIPSTART="TCP","192.168.101.110",1000

AT+CIPSTART="TCP","192.168.101.110",1000,,"192.168.101.100"

Single connection (AT+CIPMUX=0):

AT+CIPSTART=<type>,<remote IP>,<remote port>[,(<UDP local port>),(<UDP mode>)][,

<local IP>]

Multiple connections (AT+CIPMUX=1):

AT+CIPSTART=<link ID>,<type>,<remote IP>,<remote port>[,(<UDP local port>),(<UDP

mode>)][,<local IP>]

OK

af://n1507

Example:

4.3.3 Establish SSL Connection

Set Command:

Response:

Or if the TCP connection is already established, the response is:
 ALREADY CONNECTTED
 ERROR
Parameters:

<link ID>: ID of network connection (0~4), used for multiple connections.

<type>: string parameter indicating the connection type: "TCP", "UDP" or "SSL".

<remote IP>: string parameter indicating the remote IP address.

<remote port>: the remote port number.

[<TCP keep alive>](optional parameter): detection time interval when TCP is kept alive; this
function is disabled by default.

0: disable the TCP keep-alive function.
1 ~ 7200: detection time interval, unit: second (s).

[<local IP>](optional parameter): select which IP want to use, this is useful when using both
ethernet and WiFi; this parameter is disabled by default. If you want to use this parameter,
must be specified firstly, null also is valid.

Notes:

ESP32 can only set one SSL connection at most.
SSL connection does not support UART-WiFi passthrough mode (transparent transmission).
SSL connection needs a large amount of memory; otherwise, it may cause system reboot.

Example:

4.4 AT+CIPSTARTEX—Establishes TCP connection, UDP
transmission or SSL connection with automatically assigned
ID

This command is similar to AT+CIPSTART, but you need not to assign an ID by yourself when it is
the multiple connections mode (AT+CIPMUX=1), the system will assign an ID to the new
connection automatically.

AT+CIPSTART="UDP","192.168.101.110",1000,1002,2

AT+CIPSTART="UDP","192.168.101.110",1000,,,"192.168.101.100"

AT+CIPSTART=[<link ID>,]<type>,<remote IP>,<remote port>[,<TCP keep alive>][,

<local IP>]

OK

AT+CIPSTART="SSL","iot.espressif.cn",8443

AT+CIPSTART="SSL","192.168.101.110",1000,,"192.168.101.100"

af://n1541
af://n1576

4.5 AT+CIPSEND—Sends Data

Set Command:

Response:

Begin receiving serial data. When the requirement of data length is met, the transmission of data
starts.
If the connection cannot be established or gets disrupted during data transmission, the system
returns:

If data is transmitted successfully, the system returns:

Execute Command:

Response:

Enter transparent transmission, with a 20-ms interval between each packet, and a maximum of
2048 bytes per packet.
When a single packet containing +++ is received, ESP32 returns to normal command mode.
Please wait for at least one second before sending the next AT command.
This command can only be used in transparent transmission mode which requires single
connection.
For UDP transparent transmission, the value of has to be 0 when using AT+CIPSTART.

Or

Parameters:

Single connection: (+CIPMUX=0)

AT+CIPSEND=<length>

Multiple connections: (+CIPMUX=1)

AT+CIPSEND=<link ID>,<length>

Remote IP and ports can be set in UDP transmission:

AT+CIPSEND=[<link ID>,]<length>[,<remote IP>,<remote port>]

Function: to configure the data length in normal transmission mode.

OK

>

ERROR

SEND OK

AT+CIPSEND

Function: to start sending data in transparent transmission mode.

OK

>

ERROR

af://n1579

<link ID>: ID of the connection (0~4), for multiple connections.
<length>: data length, MAX: 2048 bytes.
[<remote IP>](optional parameter): remote IP can be set in UDP transmission.
[<remote port>](optional parameter): remote port can be set in UDP transmission.

4.6 AT+CIPSENDEX—Sends Data

Set Command:

Response:

Send data of designated length.
Wrap return > after the set command. Begin receiving serial data. When the requirement of data
length, determined by , is met, or when \0 appears in the data, the transmission starts.
If connection cannot be established or gets disconnected during transmission, the system
returns:

If data are successfully transmitted, the system returns:
 SEND OK
Parameters:

<link ID>: ID of the connection (0~4), for multiple connections.

<length>: data length, MAX: 2048 bytes.

When the requirement of data length, determined by <length>, is met, or when string
\0 appears, the transmission of data starts. Go back to the normal command mode and
wait for the next AT command.
When sending \0, please send it as \\0.

4.7 AT+CIPCLOSE—Closes TCP/UDP/SSL Connection

Set Command (for multiple connections):

Parameters:

<link ID>: ID number of connections to be closed; when ID=5, all connections will be closed.

Execute Command (for single connection):

Single connection: (+CIPMUX=0)

AT+CIPSENDEX=<length>

Multiple connections: (+CIPMUX=1)

AT+CIPSENDEX=<link ID>,<length>

Remote IP and ports can be set in UDP transmission:

AT+CIPSENDEX=[<link ID>,]<length>[,<remote IP>,<remote port>]

Function: to configure the data length in normal transmission mode.

OK

>

ERROR

AT+CIPCLOSE=<link ID>

Function: to close TCP/UDP connection.

af://n1606
af://n1625

Response:

4.8 AT+CIFSR—Gets the Local IP Address

Execute Command:

Response:

Parameters:

<IP address>:

IP address of the ESP32 SoftAP;
IP address of the ESP32 Station.

Notes:

Only when the ESP32 Station is connected to an AP can the Station IP can be queried.

4.9 AT+CIPMUX—Enables/Disables Multiple Connections

Query Command:

Response:

Set Command:

Response:

Parameters:

<mode>:

AT+CIPCLOSE

OK

AT+CIFSR

+CIFSR:<SoftAP IP address>

+CIFSR:<Station IP address>

OK

AT+CIPMUX?

Function: to query the connection type.

+CIPMUX:<mode>

OK

AT+CIPMUX=<mode>

Function: to set the connection type.

OK

af://n1637
af://n1656

0: single connection
1: multiple connections

Notes:

The default mode is single connection mode.
Multiple connections can only be set when transparent transmission is disabled
(AT+CIPMODE=0).
This mode can only be changed after all connections are disconnected.
If the TCP server is running, it must be deleted (AT+CIPSERVER=0) before the single
connection mode is activated.

Example:

4.10 AT+CIPSERVER—Deletes/Creates TCP or SSL Server

Set Command:

Response:

Parameters:

<mode>:

0: delete server.
1: create server.

<port>: port number; 333 by default.

[ESP32 Only] [<SSL>](optional parameter): string "SSL", to set a SSL server

[ESP32 Only] [<SSL CA enable>](optional parameter):

0: disable CA.
1: enable CA.

Notes:

A TCP server can only be created when multiple connections are activated (AT+CIPMUX=1).
A server monitor will automatically be created when the TCP server is created. And only one
server is allowed.
When a client is connected to the server, it will take up one connection and be assigned an
ID.

Example:

AT+CIPMUX=1

AT+CIPSERVER=<mode>[,<port>][,<SSL>,<SSL CA enable>]

OK

// To create a TCP server

AT+CIPMUX=1

AT+CIPSERVER=1,80

// To create a SSL server

AT+CIPMUX=1

AT+CIPSERVER=1,443,"SSL",1

af://n1687

4.11 AT+CIPSERVERMAXCONN—Set the Maximum
Connections Allowed by Server

Query Command:

Response:

Set Command:

Response:

Parameters:

<num>: the maximum number of clients allowed to connect to the TCP or SSL server.

Notes:

To set this configuration, you should call the command AT+CIPSERVERMAXCONN=<num>
before creating a server.

Example:

4.12 AT+CIPMODE—Configures the Transmission Mode

Query Command:

Response:

Set Command:

AT+CIPSERVERMAXCONN?

Function: obtain the maximum number of clients allowed to connect to the TCP or

SSL server.

+CIPSERVERMAXCONN:<num>

OK

AT+CIPSERVERMAXCONN=<num>

Function: set the maximum number of clients allowed to connect to the TCP or SSL

server.

OK

AT+CIPMUX=1

AT+CIPSERVERMAXCONN=2

AT+CIPSERVER=1,80

AT+CIPMODE?

Function: to obtain information about transmission mode.

+CIPMODE:<mode>

OK

af://n1723
af://n1743

Response:

Parameters:

<mode>:

0: normal transmission mode.
1: UART-Wi-Fi passthrough mode (transparent transmission), which can only be enabled
in TCP single connection mode or in UDP mode when the remote IP and port do not
change.

Notes:

The configuration changes will NOT be saved in flash.
During the UART-WiFi passthrough transmission, if the TCP connection breaks, ESP32 will
keep trying to reconnect until +++ is input to exit the transmission.
If it is a normal TCP transmission and the TCP connection breaks, ESP32 will give a prompt
and will not attempt to reconnect.

Example:

4.13 AT+SAVETRANSLINK—Saves the Transparent
Transmission Link in Flash

4.13.1 Save TCP Single Connection in Flash

Set Command:

Response:

Parameters:

<mode>:

0: normal mode, ESP32 will NOT enter UART-WiFi passthrough mode on power-up.
1: ESP32 will enter UART-WiFi passthrough mode on power-up.

<remote IP>: remote IP or domain name.

<remote port>: remote port.

[<type>](optional parameter): TCP or UDP, TCP by default.

[<TCP keep alive>](optional parameter): TCP is kept alive. This function is disabled by
default.

AT+CIPMODE=<mode>

Function: to set the transmission mode.

OK

AT+CIPMODE=1

AT+SAVETRANSLINK=<mode>,<remote IP or domain name>,<remote port>[,<type>,<TCP

keep alive>]

OK

af://n1772
af://n1773

0: disables the TCP keep-alive function.
1 ~ 7200: keep-alive detection time interval; unit: second (s).

Notes:

This command will save the UART-WiFi passthrough mode and its link in the NVS area. ESP32
will enter the UART-WiFi passthrough mode on any subsequent power cycles.
As long as the remote IP (or domain name) and port are valid, the configuration will be
saved in flash.

Example:

4.13.2 Save UDP Transmission in Flash

Set Command:

Response:

Parameters:

<mode>:

0: normal mode; ESP32 will NOT enter UART-WiFi passthrough mode on power-up.
1: ESP32 enters UART-WiFi passthrough mode on power-up.

<remote IP>: remote IP or domain name.

<remote port>: remote port.

[<type>](optional parameter): UDP, TCP by default.

[<UDP local port>](optional parameter): local port when UDP transparent transmission is
enabled on power-up.

Notes:

This command will save the UART-WiFi passthrough mode and its link in the NVS area. ESP32
will enter the UART-WiFi passthrough mode on any subsequent power cycles.
As long as the remote IP (or domain name) and port are valid, the configuration will be
saved in flash.

Example:

4.14 AT+CIPSTO—Sets the TCP Server Timeout

Query Command:

AT+SAVETRANSLINK=1,"192.168.6.110",1002,"TCP"

AT+SAVETRANSLINK=<mode>,<remote IP>,<remote port>,<type>[,<UDP local port>]

OK

AT+SAVETRANSLINK=1,"192.168.6.110",1002,"UDP",1005

AT+CIPSTO?

Function: to check the TCP server timeout.

af://n1808
af://n1839

Response:

Set Command:

Response:

Parameter:

<time>: TCP server timeout within the range of 0 ~ 7200s.

Notes:

ESP32 configured as a TCP server will disconnect from the TCP client that does not
communicate with it until timeout.
If AT+CIPSTO=0 , the connection will never time out. This configuration is not recommended.

Example:

4.15 AT+CIPSNTPCFG—Sets the Time Zone and the SNTP
Server

Query Command:

Response:

Execute Command:

Response:

Set Command:

+CIPSTO:<time>

OK

AT+CIPSTO=<time>

Function: to set the TCP server timeout.

OK

AT+CIPMUX=1

AT+CIPSERVER=1,1001

AT+CIPSTO=10

AT+CIPSNTPCFG?

+CIPSNTPCFG:<enable>,<timezone>,<SNTP server1>[,<SNTP server2>,<SNTP server3>]

OK

AT+CIPSNTPCFG

Function: to clear the SNTP server information.

OK

af://n1861

Response:

Parameters:

<enable>:

1: the SNTP server is configured.
0: the SNTP server is not configured.

<timezone>: time zone, range: [-11,13].

<SNTP server1>: the first SNTP server.

<SNTP server2>: the second SNTP server.

<SNTP server3>: the third SNTP server.

Note:

If the three SNTP servers are not configured, the following default configuration is used:
"cn.ntp.org.cn", "ntp.sjtu.edu.cn", "us.pool.ntp.org".

Example:

4.16 AT+CIPSNTPTIME—Queries the SNTP Time

Query Command:

Response:

Example:

4.17 AT+CIUPDATE—Updates the Software Through Wi-Fi

Execute Command:

AT+CIPSNTPCFG=<timezone>[,<SNTP server1>,<SNTP server2>,<SNTP server3>]

OK

AT+CIPSNTPCFG=8,"cn.ntp.org.cn","ntp.sjtu.edu.cn"

AT+CIPSNTPTIME?

+CIPSNTPTIME:SNTP time

OK

AT+CIPSNTPCFG=8,"cn.ntp.org.cn","ntp.sjtu.edu.cn"

OK

AT+CIPSNTPTIME?

+CIPSNTPTIME:Mon Dec 12 02:33:32 2016

OK

AT+CIUPDATE

Function: OTA the lastest version via TCP from server.

af://n1898
af://n1906

Response:

Execute Command:

Response:

Parameters:

<ota mode>:

0: OTA via TCP
1: OTA via SSL, please ensure make menuconfig > Component config > AT > OTA
based upon ssl is enabled.

<version>: AT version, for example, v1.2.0.0 , v1.1.3.0 , v1.1.2.0

<n>:

1: find the server.
2: connect to server.
3: get the software version.
4: start updating.

Example:

Or

Notes:

The speed of the upgrade is susceptible to the connectivity of the network.
ERROR will be returned if the upgrade fails due to unfavourable network conditions. Please
wait for some time before retrying.

Notice:

If using Espressif's AT BIN, AT+CIUPDATE will download a new AT BIN from the Espressif
Cloud.
If using a user-compiled AT BIN, users need to implement their own AT+CIUPDATE FOTA
function. esp-at project provides an example of FOTA.
It is suggested that users call AT+RESTORE to restore the factory default settings after
upgrading the AT firmware.

+CIPUPDATE:<n>

OK

AT+CIUPDATE=<ota mode>[,version]

Function: OTA the specified version from server.

+CIPUPDATE:<n>

OK

AT+CIUPDATE

AT+CIUPDATE=1,"v1.2.0.0"

https://www.espressif.com/zh-hans/support/download/at
https://github.com/espressif/esp-at/blob/master/main/at_upgrade.c

4.18 AT+CIPDINFO—Shows the Remote IP and Port with
"+IPD"

Set Command:

Response:

Parameters:

<mode>:

0: does not show the remote IP and port with "+IPD" and "+CIPRECVDATA".
1: shows the remote IP and port with "+IPD" and "+CIPRECVDATA".

Example:

4.19 +IPD—Receives Network Data

Command:

Parameters:

[<remote IP>]: remote IP string, enabled by command AT+CIPDINFO=1 .
[<remote port>]: remote port, enabled by command AT+CIPDINFO=1 .
<link ID>: ID number of connection.
<len>: data length.
<data>: data received.

Note:

The command is valid in normal command mode. When the module receives network data,
it will send the data through the serial port using the +IPD command.

4.20 AT+CIPSSLCCONF—Config SSL client

Query Command:

Response:

AT+CIPDINFO=<mode>

OK

AT+CIPDINFO=1

Single connection:

(+CIPMUX=0)+IPD,<len>[,<remote IP>,<remote port>]:<data>

multiple connections:

(+CIPMUX=1)+IPD,<link ID>,<len>[,<remote IP>,<remote port>]:<data>

AT+CIPSSLCCONF?

Function: to get the configuration of each link that running as SSL client.

af://n1956
af://n1972
af://n1992

Set Command:

Response:

Parameters:

<link ID>: ID of the connection (0~max), for multiple connections, if the value is max, it
means all connections. By default, max is 5.

<auth_mode>:

0: no authorization.
1: load cert and private key for server authorization.
2: load CA for client authorize server cert and private key.
3: both authorization.

<pki_number>: the index of cert and private key, if only one cert and private key, the value
should be 0.

<ca_number>: the index of CA, if only one CA, the value should be 0.

Notes:

Call this command before establish SSL connection if you want configuration take effect
immediately.
The configuration changes will be saved in the NVS area. If you use AT+SAVETRANSLINK to
set SSL passthrough mode, the ESP will establish an SSL connection based on this
configuration after next power on.

4.21 AT+CIPRECONNINTV—Set Wi-Fi transparent
transmitting auto-connect interval

Set Command:

Parameters:

<interval>: Time interval for automatic reconnection, default is 1, range is 1~36000, unit is
100ms.

Example:

+CIPSSLCCONF:<link ID>,<auth_mode>,<pki_number>,<ca_number>

OK

Single connection: (+CIPMUX=0)

AT+CIPSSLCCONF=<auth_mode>,<pki_number>,<ca_number>

Multiple connections: (+CIPMUX=1)

AT+CIPSSLCCONF=<link ID>,<auth_mode>,<pki_number>,<ca_number>

OK

AT+CIPRECONNINTV=<interval>

Function: to set the interval of auto reconnecting when the TCP/UDP/SSL

transmission broke in UART-WiFi transparent mode.

AT+CIPRECONNINTV=10

af://n2027

4.22 +IPD—Receives Network Data

Command:

Parameters:

[<remote IP>]: remote IP, enabled by command AT+CIPDINFO=1 .
[<remote port>]: remote port, enabled by command AT+CIPDINFO=1 .
<link ID>: ID number of connection.
<len>: data length.
<data>: data received.

Note:

The command is valid in normal command mode. When the module receives network data,
it will send the data through the serial port using the +IPD command.

4.23 AT+CIPRECVMODE—Set Socket Receive Mode

Query Command:

Response:

Set Command:

Response:

Parameters:

<mode>: the receive mode of socket data is active mode by default.

0: active mode - ESP AT will send all the received socket data instantly to host MCU
through UART with header “+IPD".
1: passive mode - ESP AT will keep the received socket data in an internal buffer (default
is 5840 bytes), and wait for host MCU to read the data. If the buffer is full, the socket
transmission will be blocked.

Example:

Single connection:

(+CIPMUX=0)+IPD,<len>[,<remote IP>,<remote port>]:<data>

multiple connections:

(+CIPMUX=1)+IPD,<link ID>,<len>[,<remote IP>,<remote port>]:<data>

AT+CIPRECVMODE?

Function: to query socket receive mode.

+CIPRECVMODE:<mode>

OK

AT+CIPRECVMODE=<mode>

OK

af://n2036
af://n2056

Notes:

The configuration is for TCP and SSL transmission only, and can not be used on WiFi-UART
passthrough mode. If it is a UDP transmission in passive mode，data will be missed when
buffer full.

If the passive mode is enabled, when ESP AT receives socket data, it will prompt the
following message in different scenarios:

for multiple connection mode (AT+CIPMUX=1), the message is: +IPD,<link ID>,<len>
for single connection mode (AT+CIPMUX=0), the message is: +IPD,<len>
<len> is the total length of socket data in buffer

4.24 AT+CIPRECVDATA—Get Socket Data in Passive Receive
Mode

Set Command:

Response:

or

Parameters:

<link_id>: connection ID in multiple connection mode.
<len>: data length that you want to get, max is 2048 bytes per time.
<actual_len>: length of the data you actually get
<data>: the data you get
[<remote IP>]: remote IP string, enabled by command AT+CIPDINFO=1 .
[<remote port>]: remote port, enabled by command AT+CIPDINFO=1 .

Example:

Notes:

AT+CIPRECVMODE=1

Single connection: (+CIPMUX=0)

AT+CIPRECVDATA=<len>

Multiple connections: (+CIPMUX=1)

AT+CIPRECVDATA=<link_id>,<len>

+CIPRECVDATA:<actual_len>,<data>

OK

+CIPRECVDATA:<actual_len>,<remote IP>,<remote port>,<data>

OK

AT+CIPRECVMODE=1

For example, if host MCU gets a message of receiving 100 bytes data in

connection with No.0, the message will be as following: +IPD,0,100

then you can read those 100 bytes by using the command below

AT+CIPRECVDATA=0,100

af://n2090

In a case of disconnection, the buffered Socket data will still be there and can be read by
MCU until you send AT+CIPCLOSE , or a new connection occupied the previous link_id
instead.

4.25 AT+CIPRECVLEN—Get Socket Data Length in Passive
Receive Mode

Query Command:

Response:

Parameters:

<data length of link>: length of the entire data buffered for the link

Example:

Notes:

For ssl link, it will return the length of encrypted data, so the returned length will be more
than the real data length.

4.26 AT+PING: Ping Packets

Set Command:

Response:

or

Parameters:

AT+CIPRECVLEN?

Function: query the length of the entire data buffered for the link.

+CIPRECVLEN:<data length of link0>,<data length of link1>,<data length of

link2>,<data length of link3>,<data length of link4>

OK

AT+CIPRECVLEN?

+CIPRECVLEN:100,,,,,

OK

AT+PING=<IP>

Function: Ping packets.

+PING:<time>

OK

+timeout

ERROR

af://n2118
af://n2134

<IP>: string; host IP or domain name
<time>: the response time of ping, unit: millisecond.

Example:

4.27 AT+CIPDNS : Configures Domain Name System.

Query Command:

Response:

Set Command:

Response:

or

Parameters:

<enable>:

0: Enable automatic DNS settings from DHCP, the DNS will be restore to
222.222.67.208 , only when DHCP is updated will it take effect.
1: Enable manual DNS settings, if not set DNS IP , It will use 222.222.67.208 by
default.

<DNS IP1>: the first DNS IP. For set command, only for manual DNS settings; for query
command, it is current DNS setting.

<DNS IP2>: the second DNS IP. For set command, only for manual DNS settings; for query
command, it is current DNS setting.

<DNS IP3>: the third DNS IP. For set command, only for manual DNS settings; for query
command, it is current DNS setting.

Example:

AT+PING="192.168.1.1"

AT+PING="www.baidu.com"

AT+CIPDNS?

Function: to obtain current Domain Name System information.

+CIPDNS:<enable>[,<"DNS IP1">,<"DNS IP2">,<"DNS IP3">]

OK

AT+CIPDNS=<enable>[,<"DNS IP1">,<"DNS IP2">,<"DNS IP3">]

Function: Configures Domain Name System.

OK

ERROR

AT+CIPDNS=0

AT+CIPDNS=1,"222.222.67.208","114.114.114.114","8.8.8.8"

af://n2150

Notes:

The configuration changes will be saved in the NVS area.
The three parameters cannot be set to the same server.
The DNS server may change according to the configuration of the router which the ESP chip
connected to.

5. [ESP32 Only] BLE-Related AT Commands

5.1 [ESP32 Only] AT+BLEINIT—BLE Initialization

Query Command:

Response:

If BLE is not initialized, it will return

If BLE is initialized, it will return

Set Command:

Response:

Parameter:

<init>:

0: deinit ble
1: client role
2: server role

Notes:

at_customize.bin has to be downloaded, so that the relevant commands can be used. Please
refer to the ESP32_Customize_Partitions for more details.

Before using BLE AT commands, this command has to be called first to trigger the
initialization process.

After being initialized, the BLE role cannot be changed. User needs to call AT+RST to restart
the system first, then re-init the BLE role.

AT+BLEINIT?

Function: to check the initialization status of BLE.

+BLEINIT:0

OK

+BLEINIT:<role>

OK

AT+BLEINIT=<init>

Function: to initialize the role of BLE.

OK

af://n2186
af://n2188
https://github.com/espressif/esp-at/tree/master/docs

If using ESP32 as a BLE server, a service bin should be downloaded into Flash.

To learn how to generate a service bin, please refer to esp-at/tools/readme.md.
The download address of the service bin is the "ble_data" address in esp-
at/partitions_at.csv.

Example:

5.2 [ESP32 Only] AT+BLEADDR—Sets BLE Device's Address

Query Command:

Response:

Set Command:

Response:

Parameter:

<addr_type>:

0: public address
1: random address

Notes:

A static address shall meet the following requirements:

The two most significant bits of the address shall be equal to 1
At least one bit of the random part of the address shall be 0
At least one bit of the random part of the address shall be 1

Example:

5.3 [ESP32 Only] AT+BLENAME—Sets BLE Device's Name

Query Command:

AT+BLEINIT=1

AT+BLEADDR?

Function: to get the BLE public address.

+BLEADDR:<BLE_public_addr>

OK

AT+BLEADDR=<addr_type>[,<random_addr>]

Function: to set the BLE address type.

OK

AT+BLEADDR=1,"f8:7f:24:87:1c:7b" // Set Random Device Address, Static Address

AT+BLEADDR=1 // Set Random Device Address, Private

Address

AT+BLEADDR=0 // Set Public Device Address

af://n2229
af://n2261

Response:

Set Command:

Response:

Parameter:

<device_name>: the BLE device name

Notes:

The default BLE device name is "BLE_AT".

Example:

5.4 [ESP32 Only] AT+BLESCANPARAM—Sets Parameters of
BLE Scanning

Query Command:

Response:

Set Command:

Response:

AT+BLENAME?

Function: to get the BLE device name.

+BLENAME:<device_name>

OK

AT+BLENAME=<device_name>

Function: to set the BLE device name, The maximum length is 32.

OK

AT+BLENAME="esp_demo"

AT+BLESCANPARAM?

Function: to get the parameters of BLE scanning.

+BLESCANPARAM:<scan_type>,<own_addr_type>,<filter_policy>,<scan_interval>,

<scan_window>

OK

AT+BLESCANPARAM=<scan_type>,<own_addr_type>,<filter_policy>,<scan_interval>,

<scan_window>

Function: to set the parameters of BLE scanning.

OK

af://n2281

Parameters:

<scan_type>:

0: passive scan
1: active scan

<own_addr_type>:

0: public address
1: random address
2: RPA public address
3: RPA random address

<filter_policy>:

0: BLE_SCAN_FILTER_ALLOW_ALL
1: BLE_SCAN_FILTER_ALLOW_ONLY_WLST
2: BLE_SCAN_FILTER_ALLOW_UND_RPA_DIR
3: BLE_SCAN_FILTER_ALLOW_WLIST_PRA_DIR

<scan_interval>: scan interval

<scan_window>: scan window

Notes:

<scan_window> CANNOT be larger than <scan_interval>.

Example:

5.5 [ESP32 Only] AT+BLESCAN—Enables BLE Scanning

Set Command:

Response:

Parameters:

<enable>:

0: disable continuous scanning
1: enable continuous scanning

[<interval>]: optional parameter, unit: second

When disabling the scanning, this parameter should be omitted
When enabling the scanning, and the <interval> is 0, it means that scanning is
continuous
When enabling the scanning, and the <interval> is NOT 0, for example, command
AT+BLESCAN=1,3 , it means that scanning should last for 3 seconds and then stop
automatically, so that the scanning results be returned.

<addr>: BLE address

AT+BLEINIT=1 // role: client

AT+BLESCANPARAM=0,0,0,100,50

AT+BLESCAN=<enable>[,<interval>]

Function: to enable/disable scanning.

+BLESCAN:<addr>,<rssi>,<adv_data>,<scan_rsp_data>,<addr_type>

OK

af://n2332

<rssi>: signal strength

<adv_data>: advertising data

<scan_rsp_data>: scan response data

<addr_type>: the address type of broadcasters

Example:

5.6 [ESP32 Only] AT+BLESCANRSPDATA—Sets BLE Scan
Response

Set Command:

Response:

Parameter:

<scan_rsp_data>: scan response data is a HEX string.

For example, to set the response data as "0x11 0x22 0x33 0x44 0x55", the command
should be AT+BLESCANRSPDATA="1122334455" .

Example:

5.7 [ESP32 Only] AT+BLEADVPARAM—Sets Parameters of
Advertising

Query Command:

Response:

Set Command:

AT+BLEINIT=1 // role: client

AT+BLESCAN=1 // start scanning

AT+BLESCAN=0 // stop scanning

AT+BLESCANRSPDATA=<scan_rsp_data>

Function: to set scan response.

OK

AT+BLEINIT=2 // role: server

AT+BLESCANRSPDATA="1122334455"

AT+BLEADVPARAM?

Function: to query the parameters of advertising.

+BLEADVPARAM:<adv_int_min>,<adv_int_max>,<adv_type>,<own_addr_type>,

<channel_map>,<adv_filter_policy>,<peer_addr_type>,<peer_addr>

OK

af://n2368
af://n2383

Response:

Parameters:

<adv_int_min>: minimum value of advertising interval; range: 0x0020 ~ 0x4000

<adv_int_max>: maximum value of advertising interval; range: 0x0020 ~ 0x4000

<adv_type>:

0：ADV_TYPE_IND
2：ADV_TYPE_SCAN_IND
3：ADV_TYPE_NONCONN_IND

<own_addr_type>：own BLE address type

0：BLE_ADDR_TYPE_PUBLIC
1：BLE_ADDR_TYPE_RANDOM

<channel_map>：channel of advertising

1：ADV_CHNL_37
2：ADV_CHNL_38
4：ADV_CHNL_39
7：ADV_CHNL_ALL

[<adv_filter_policy>](optional parameter)：filter policy of advertising

0：ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY
1：ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY
2：ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST
3：ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST

[<peer_addr_type>](optional parameter)：remote BLE address type

0：PUBLIC
1：RANDOM

[<peer_addr>](optional parameter)：remote BLE address

Example:

5.8 [ESP32 Only] AT+BLEADVDATA—Sets Advertising Data

Set Command:

Response:

AT+BLEADVPARAM=<adv_int_min>,<adv_int_max>, <adv_type>,<own_addr_type>,

<channel_map>[,<adv_filter_policy>][,<peer_addr_type>] [,<peer_addr>]

Function: to set the parameters of advertising.

OK

AT+BLEINIT=2 // role: server

AT+BLEADVPARAM=50,50,0,0,4,0,0,"12:34:45:78:66:88"

AT+BLEADVDATA=<adv_data>

Function: to set advertising data.

OK

af://n2448

Parameters:

<adv_data>: advertising data; this is a HEX string.

For example, to set the advertising data as "0x11 0x22 0x33 0x44 0x55", the command
should be AT+BLEADVDATA="1122334455" .

Example:

5.9 [ESP32 Only] AT+BLEADVSTART—Starts Advertising

Execute Command:

Response:

Notes:

If advertising parameters are NOT set by command AT+BLEADVPARAM=<adv_parameter> , the
default parameters will be used.
If advertising data is NOT set by command AT+BLEADVDATA=<adv_data> , the all zeros data
will be sent.

Example:

5.10 [ESP32 Only] AT+BLEADVSTOP—Stops Advertising

Execute Command:

Response:

Notes:

After having started advertising, if the BLE connection is established successfully, it will stop
advertising automatically. In such a case, this command does NOT need to be called.

Example:

AT+BLEINIT=2 // role: server

AT+BLEADVDATA="1122334455"

AT+BLEADVSTART

Function: to start advertising.

OK

AT+BLEINIT=2 // role: server

AT+BLEADVSTART

AT+BLEADVSTOP

Function: to stop advertising.

OK

af://n2463
af://n2477

5.11 [ESP32 Only] AT+BLECONN—Establishes BLE connection

Query Command:

Response:

If the connection has not been established, there will NOT be <conn_index> and
<remote_address>
Set Command:

Response:

It will prompt the message below, if the connection is established successfully:

It will prompt the message below, if NOT:

Parameters:

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.
<remote_address>：remote BLE address
<addr_type>: the address type of broadcasters
<timeout>: the timeout for the connection command, range is [3,30] second.

Example:

5.12 [ESP32 Only] AT+BLEDISCONN—Ends BLE connection

Execute Command:

AT+BLEINIT=2 // role: server

AT+BLEADVSTART

AT+BLEADVSTOP

AT+BLECONN?

Function: to query the BLE connection.

+BLECONN:<conn_index>,<remote_address>

OK

AT+BLECONN=<conn_index>,<remote_address>[,<addr_type>,<timeout>]

Function: to establish the BLE connection, the address_type is an optional

parameter.

OK

+BLECONN:<conn_index>,<remote_address>

+BLECONN:<conn_index>,-1

AT+BLEINIT=1 // role: client

AT+BLECONN=0,"24:0a:c4:09:34:23",0,10

af://n2489
af://n2515

Response:

Parameter:

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.
<remote_address>: remote BLE address

Notes:

Only client can call this command to break the connection.

Example:

5.13 [ESP32 Only] AT+BLEDATALEN—Sets BLE Data Packet
Length

Set Command:

Response:

Parameter:

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.
<pkt_data_len>: data packet's length; range: 0x001b ~ 0x00fb

Notes:

The BLE connection has to be established first.

Example:

5.14 [ESP32 Only] AT+BLECFGMTU—Sets BLE MTU Length

AT+BLEDISCONN=<conn_index>

Function: to end the BLE connection.

OK // the AT+BLEDISCONN command is received

If the command is successful, it will prompt + BLEDISCONN:<conn_index>,

<remote_address>

AT+BLEINIT=1 // role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLEDISCONN=0

AT+BLEDATALEN=<conn_index>,<pkt_data_len>

Function: to set the length of BLE data packet.

OK

AT+BLEINIT=1 // role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLEDATALEN=0,30

af://n2533
af://n2551

Query Command:

Response:

Set Command:

Response:

Parameter:

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.
<mtu_size>: MTU length

Notes:

Only the client can call this command to set the length of MTU. However, the BLE connection
has to be established first.
The actual length of MTU needs to be negotiated. The "OK" response only means that the
MTU length must be set. So, the user should use command AT+BLECFGMTU? to query the
actual MTU length.

Example:

5.15 [ESP32 Only] AT+BLEGATTSSRVCRE—GATTS Creates
Services

Execute Command:

Response:

Notes:

AT+BLECFGMTU?

Function: to query the length of the maximum transmission unit (MTU).

+BLECFGMTU:<conn_index>,<mtu_size>

OK

AT+BLECFGMTU=<conn_index>,<mtu_size>

Function: to set the length of the maximum transmission unit (MTU).

OK // the command is received

AT+BLEINIT=1 // role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLECFGMTU=0,300

AT+BLEGATTSSRVCRE

Function: The Generic Attributes Server (GATTS) creates BLE services.

OK

af://n2575

If using ESP32 as a BLE server, a service bin should be downloaded into Flash in order to
provide services.

To learn how to generate a service bin, please refer to esp-at/tools/readme.md.
The download address of the service bin is the "ble_data" address in esp-
at/partitions_at.csv.

This command should be called immediately to create services, right after the BLE server is
initialized.

If a BLE connection is established first, the service creation will fail.

Example:

5.16 [ESP32 Only] AT+BLEGATTSSRVSTART—GATTS Starts
Services

Execute Command:

Set Command:

Response:

Parameter:

<srv_index>: service's index starting from 1

Example:

5.17 [ESP32 Only] AT+BLEGATTSSRV—GATTS Discovers
Services

Query Command:

Response:

AT+BLEINIT=2 // role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSTART

Function: GATTS starts all services.

AT+BLEGATTSSRVSTART=<srv_index>

Function: GATTS starts a specific service.

OK

AT+BLEINIT=2 // role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSSRV?

Function: GATTS services discovery.

af://n2596
af://n2610

Parameters:

<srv_index>: service's index starting from 1

<start>:

0：the service has not started
1：the service has already started

<srv_uuid>: service's UUID

<srv_type>: service's type

0：is not a primary service
1：is a primary service

Example:

5.18 [ESP32 Only] AT+BLEGATTSCHAR—GATTS Discovers
Characteristics

Query Command:

Response:

When showing a characteristic, it will be as:

When showing a descriptor, it will be as:

Parameters:

<srv_index>: service's index starting from 1
<char_index>: characteristic's index starting from 1
<char_uuid>: characteristic's UUID
<char_prop>: characteristic's properties
<desc_index>: descriptor's index
<desc_uuid>: descriptor's UUID

Example:

+BLEGATTSSRV:<srv_index>,<start>,<srv_uuid>,<srv_type>

OK

AT+BLEINIT=2 // role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRV?

AT+BLEGATTSCHAR?

Function: GATTS characteristics discovery.

+BLEGATTSCHAR:"char",<srv_index>,<char_index>,<char_uuid>,<char_prop>

+BLEGATTSCHAR:"desc",<srv_index>,<char_index>,<desc_index>

OK

af://n2638

5.19 [ESP32 Only] AT+BLEGATTSNTFY—GATTS Notifies of
Characteristics

Set Command:

Response:

Begin receiving serial data. When the requirement of data length, determined by , is met, the
notification starts.
If the data transmission is successful, the system returns:
 OK
Parameters:

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.
<srv_index>: service's index; it can be fetched with command AT+BLEGATTSCHAR?
<char_index>: characteristic's index; it can be fetched with command AT+BLEGATTSCHAR?
<length>: data length

Example:

5.20 [ESP32 Only] AT+BLEGATTSIND—GATTS Indicates
Characteristics

Set Command:

Response:

AT+BLEINIT=2 // role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSCHAR?

AT+BLEGATTSNTFY=<conn_index>,<srv_index>,<char_index>,<length>

Function: GATTS to notify of its characteristics.

>

AT+BLEINIT=2 // role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEADVSTART // starts advertising. After the client is connected, it must be

configured to receive notifications.

AT+BLEGATTSCHAR? // check which characteristic the client will be notified of

// for example, to notify of 4 bytes of data using the 6th characteristic in the

3rd service, use the following command:

AT+BLEGATTSNTFY=0,3,6,4

// after > shows, inputs 4 bytes of data, such as "1234"; then, the data will be

transmitted automatically

AT+BLEGATTSIND=<conn_index>,<srv_index>,<char_index>,<length>

Function: GATTS indicates its characteristics.

af://n2663
af://n2681

Begin receiving serial data. When the requirement of data length, determined by , is met, the
indication starts.
If the data transmission is successful, the system returns:
 OK
Parameters:

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.
<srv_index>: service's index; it can be fetched with command AT+BLEGATTSCHAR?
<char_index>: characteristic's index; it can be fetched with command AT+BLEGATTSCHAR?
<length>: data length

Example:

5.21 [ESP32 Only] AT+BLEGATTSSETATTR—GATTS Sets
Characteristic

Set Command:

Response:

Begin receiving serial data. When the requirement of data length, determined by , is met, the
setting starts.
If the setting is successful, the system returns:
 OK
Parameters:

<srv_index>: service's index; it can be fetched with command AT+BLEGATTSCHAR?

<char_index>: characteristic's index; it can be fetched with command AT+BLEGATTSCHAR?

[<desc_index>](Optional parameter): descriptor's index.

If it is set, this command is used to set the value of the descriptor; if it is not, this
command is used to set the value of the characteristic.

>

AT+BLEINIT=2 // role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEADVSTART // starts advertising. After the client is connected, it must be

configured to receive indications.

AT+BLEGATTSCHAR? // check for which characteristic the client can receive

indications

// for example, to indicate 4 bytes of data using the 7th characteristic in the

3rd service, use the following command:

AT+BLEGATTSIND=0,3,7,4

// after > shows, inputs 4 bytes of data, such as "1234"; then, the data will be

transmitted automatically

AT+BLEGATTSSETATTR=<srv_index>,<char_index>[,<desc_index>],<length>

Function: GATTS to set its characteristic (descriptor).

>

af://n2699

<length>: data length

Note:

If the <value> length is larger than the maximum length allowed, the setting will fail.

Example:

5.22 [ESP32 Only] AT+BLEGATTCPRIMSRV—GATTC Discovers
Primary Services

Query Command:

Response:

Parameters:

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>: service's index starting from 1

<srv_uuid>: service's UUID

<srv_type>: service's type

0：is not a primary service
1：is a primary service

Note:

The BLE connection has to be established first.

Example:

5.23 [ESP32 Only] AT+BLEGATTCINCLSRV—GATTC Discovers
Included Services

AT+BLEINIT=2 // role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSCHAR?

// for example, to set 4 bytes of data of the 1st characteristic in the 1st

service, use the following command:

AT+BLEGATTSSETATTR=1,1,,4

// after > shows, inputs 4 bytes of data, such as "1234"; then, the setting

starts

AT+BLEGATTCPRIMSRV=<conn_index>

Function: GATTC to discover primary services.

+ BLEGATTCPRIMSRV:<conn_index>,<srv_index>,<srv_uuid>,<srv_type>

OK

AT+BLEINIT=1 // role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

af://n2724
af://n2751

Set Command:

Response:

Parameters:

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>: service's index; it can be fetched with command AT+BLEGATTCPRIMSRV=
<conn_index>

<srv_uuid>: service's UUID

<srv_type>: service's type

0：is not a primary service
1：is a primary service

<included_srv_uuid>: included service's UUID

<included_srv_type>: included service's type

0：is not a primary service
1：is a primary service

Note:

The BLE connection has to be established first.

Example:

5.24 [ESP32 Only] AT+BLEGATTCCHAR—GATTC Discovers
Characteristics

Set Command:

Response:

When showing a characteristic, it will be as:

AT+BLEGATTCINCLSRV=<conn_index>,<srv_index>

Function: GATTC to discover included services.

+ BLEGATTCINCLSRV:<conn_index>,<srv_index>,<srv_uuid>,<srv_type>,

<included_srv_uuid>,<included_srv_type>

OK

AT+BLEINIT=1 // role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCINCLSRV=0,1 // set a specific index according to the result of the

previous command

AT+BLEGATTCCHAR=<conn_index>,<srv_index>

Function: GATTC to discover characteristics.

af://n2787

When showing a descriptor, it will be as:

Parameters:

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.
<srv_index>: service's index; it can be fetched with command AT+BLEGATTCPRIMSRV=
<conn_index>

<char_index>: characteristic's index starting from 1
<char_uuid>: characteristic's UUID
<char_prop>: characteristic's properties
<desc_index>: descriptor's index
<desc_uuid>: descriptor's UUID

Note:

The BLE connection has to be established first.

Example:

5.25 [ESP32 Only] AT+BLEGATTCRD—GATTC Reads a
Characteristic

Set Command:

Response：

Parameters：

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>: service's index; it can be fetched with command AT+BLEGATTCPRIMSRV=
<conn_index>

+BLEGATTCCHAR:"char",<conn_index>,<srv_index>,<char_index>,<char_uuid>,

<char_prop>

+BLEGATTCCHAR:"desc",<conn_index>,<srv_index>,<char_index>,<desc_index>,

<desc_uuid>

OK

AT+BLEINIT=1 // role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,1 // set a specific index according to the result of the

previous command

AT+BLEGATTCRD=<conn_index>,<srv_index>,<char_index>[,<desc_index>]

Function: GATTC to read a characteristic or descriptor.

+BLEGATTCRD:<conn_index>,<len>,<value>

OK

af://n2818

<char_index>: characteristic's index; it can be fetched with command AT+BLEGATTCCHAR=
<conn_index>,<srv_index>

[<desc_index>](Optional parameter): descriptor's index.

If it is set, the value of the target descriptor will be read;
if it is not set, the value of the target characteristic will be read.

<len>: data length

<char_value>: characteristic's value. HEX string is read by command AT+BLEGATTCRD=
<conn_index>,<srv_index>,<char_index> .

For example, if the response is "+BLEGATTCRD:1,30", it means that the value length is 1,
and the content is "0x30".

<desc_value>: descriptor's value. HEX string is read by command AT+BLEGATTCRD=
<conn_index>,<srv_index>,<char_index>,<desc_index> .

For example, if the response is "+BLEGATTCRD:4,30313233", it means that the value
length is 4, and the content is "0x30 0x31 0x32 0x33".

Note:

The BLE connection has to be established first.
If the target characteristic cannot be read, it will return "ERROR".

Example：

5.26 [ESP32 Only] AT+BLEGATTCWR—GATTC Writes
Characteristic

Set Command:

Response：

Begin receiving serial data. When the requirement of data length, determined by , is met, the
writting starts.
If the setting is successful, the system returns:
 OK
Parameters：

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

AT+BLEINIT=1 // role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,3 // set a specific index according to the result of the

previous command

// for example, to read 1st descriptor of the 2nd characteristic in the 3rd

service, use the following command:

AT+BLEGATTCRD=0,3,2,1

AT+BLEGATTCWR=<conn_index>,<srv_index>,<char_index>[,<desc_index>],<length>

Function: GATTC to write characteristics or descriptor.

>

af://n2859

<srv_index>: service's index; it can be fetched with command AT+BLEGATTCPRIMSRV=
<conn_index>

<char_index>: characteristic's index; it can be fetched with command AT+BLEGATTCCHAR=
<conn_index>,<srv_index>

[<desc_index>](Optional parameter): descriptor's index.

If it is set, the value of the target descriptor will be written;
If it is not set, the value of the target characteristic will be written.

<length>: data length

Note:

The BLE connection has to be established first.
If the target characteristic cannot be written, it will return "ERROR".

Example：

5.27 [ESP32 Only] AT+BLESPPCFG—Sets BLE spp parameters

Query Command:

Response:

Set Command:

Response:

Parameters:

<option>: if the option is 0, it means all the spp parametersthe will be reset, and the next
four parameters don't need input. if the option is 1, the user must input all the parameters.

AT+BLEINIT=1 // role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,3 // set a specific index according to the result of the

previous command

// for example, to write 6 bytes of data to the 4th characteristic in the 3rd

service, use the following command:

AT+BLEGATTCWR=0,3,4,,6

// after > shows, inputs 6 bytes of data, such as "123456"; then, the writing

starts

AT+BLESPPCFG?

Function: to get the parameters of BLE spp.

+BLESPPCFG:<tx_service_index>,<tx_char_index>,<rx_service_index>,<rx_char_index>

OK

AT+BLESCANPARAM=<option>[,<tx_service_index>,<tx_char_index>,<rx_service_index>,

<rx_char_index>]

Function: to set or reset the parameters of BLE spp.

OK

af://n2890

<tx_service_index>: tx service's index; it can be fetched with command
AT+BLEGATTCPRIMSRV=<conn_index> and AT+BLEGATTSSRVCRE?
<tx_char_index>: tx characteristic's index; it can be fetched with command
AT+BLEGATTCCHAR=<conn_index>,<srv_index> and AT+BLEGATTSCHAR?
<rx_service_index>: rx service's index; it can be fetched with command
AT+BLEGATTCPRIMSRV=<conn_index> and AT+BLEGATTSSRVCRE?
<rx_char_index>: rx characteristic's index; it can be fetched with command
AT+BLEGATTCCHAR=<conn_index>,<srv_index> and AT+BLEGATTSCHAR?

Note:

In BLE client, the property of tx characteristic must be write with response or write without
response, the property of rx characteristic must be indicate or notify.
In BLE server, the property of tx characteristic must be indicate or notify, the property of rx
characteristic must be write with response or write without response.

Example:

5.28 [ESP32 Only] AT+BLESPP—Enter BLE spp mode

Execute Command:

Response:

Note:

If the ble spp parameters is illegal, this command will return ERROR.

Example:

5.29 [ESP32 Only] AT+BLESECPARAM—Set BLE encryption
parameters

Query Command:

Response:

AT+BLESPPCFG=0 // reset ble spp parameters

AT+BLESPPCFG=1,3,5,3,7 // set ble spp parameters

AT+BLESPPCFG? // query ble spp parameters

AT+BLESPP

Function: Enter BLE spp mode.

>

AT+BLESPP // enter ble spp mode

AT+BLESECPARAM?

Function: to get the parameters of BLE smp.

+BLESECPARAM:<auth_req>,<iocap>,<key_size>,<init_key>,<rsp_key>,<auth_option>

OK

af://n2920
af://n2932

Set Command:

Response:

Parameters:

<auth_req>:

0 : NO_BOND
1 : BOND
4 : MITM
8 : SC_ONLY
9 : SC_BOND
12 : SC_MITM
13 : SC_MITM_BOND

<iocap>:

0 : DisplayOnly
1 : DisplayYesNo
2 : KeyboardOnly
3 : NoInputNoOutput
4 : Keyboard displa

<key_size>: the key size should be 7~16 bytes.

<init_key>: combination of the bit pattern.

<rsp_key>: combination of the bit pattern.

<auth_option>: auth option of security.

0 : Select the security level automaticly.
1 : If cannot follow the preset security level, the connection will disconnect.

Note:

The bit pattern for init_key&rsp_key is:

(1<<0) Used to exchange the encrytyption key in the init key & response key
(1<<1) Used to exchange the IRK key in the init key & response key
(1<<2) Used to exchange the CSRK key in the init key & response key
(1<<3) Used to exchange the link key(this key just used in the BLE & BR/EDR coexist
mode) in the init key & response key

Example:

5.30 [ESP32 Only] AT+BLEENC—Initiate BLE encryption
request

Set Command:

AT+BLESECPARAM=<auth_req>,<iocap>,<key_size>,<init_key>,<rsp_key>[,

<auth_option>]

Function: to set the parameters of BLE smp.

OK

AT+BLESECPARAM=1,4,16,3,3,0

af://n3002

Response:

Parameters:

<conn_index>: index of BLE connection.

<sec_act>:

0 : SEC_NONE
1 : SEC_ENCRYPT
2 : SEC_ENCRYPT_NO_MITM
3 : SEC_ENCRYPT_MITM

Note:

Before ipput this command, user must set the security paramsters and connection with
remote device.

Example:

5.31 [ESP32 Only] AT+BLEENCRSP—Grant security request
access

Set Command:

Response:

Parameters:

<conn_index>: index of BLE connection.

<accept>:

0 : reject
1 : accept;

Example:

5.32 [ESP32 Only] AT+BLEKEYREPLY—Reply the key value to
the peer device in the lagecy connection stage

AT+BLEENC=<conn_index>,<sec_act>

Function: to start a pairing request

OK

AT+BLESECPARAM=1,4,16,3,3

AT+BLEENC=0,3

AT+BLEENCRSP=<conn_index>,<accept>

Function: to set a pairing response.

OK

AT+BLEENCRSP=0,1

af://n3029
af://n3048

Set Command:

Response:

Parameters:

<conn_index>: index of BLE connection.
<key>: pairing key

Example:

5.33 [ESP32 Only] AT+BLECONFREPLY—Reply the comfirm
value to the peer device in the lagecy connection stage

Set Command:

Response:

Parameters:

<conn_index>: index of BLE connection.

<confirm>:

0 : NO
1 : Yes

Example:

5.34 [ESP32 Only] AT+BLEENCDEV—Query BLE encryption
device list

Query Command:

Response:

AT+BLEKEYREPLY=<conn_index>,<key>

Function: to reply a pairing key.

OK

AT+BLEKEYREPLY=0,649784

AT+BLECONFREPLY=<conn_index>,<confirm>

Function: to reply to a pairing result.

OK

AT+BLECONFREPLY=0,1

AT+BLEENCDEV?

Function: to get the bounded devices.

af://n3062
af://n3081

Parameters:

<enc_dev_index>: index of the bonded devices.
<mac_address>: Mac address.

Example:

5.35 [ESP32 Only] AT+BLEENCCLEAR—Clear BLE encryption
device list

Set Command:

Response:

Execute Command:

Response:

Parameters:

<enc_dev_index>: index of the bonded devices.

Example:

5.36 [ESP32 Only][AT+BLESETKEY](#BLE-AT)—Set BLE static
pair key

Query Command:

Response:

+BLEENCDEV:<enc_dev_index>,<mac_address>

OK

AT+BLEENCDEV?

AT+BLEENCCLEAR=<enc_dev_index>

Function: remove a device from the security database list with a specific index.

OK

AT+BLEENCCLEAR

Function: remove all devices from the security database.

OK

AT+BLEENCCLEAR

AT+BLESETKEY?

Function: to query the ble static pair key, If it's not set, it will returns -1.

af://n3095
af://n3111

Set Command:

Response:

Parameters:

<static_key>: static BLE pair key.

Example:

5.37 [ESP32 Only][AT+BLEHIDINIT](#BLE-AT)—BLE HID device
profile initialization

Query Command:

Response:

If BLE HID device profile is not initialized, it will return:

If BLE HID device profile is initialized, it will return:

Set Command:

Response:

Parameter:

<init>:

+BLESETKEY:<static_key>

OK

AT+BLESETKEY=<static_key>

Function: to set a BLE static pair key for all BLE connections.

OK

AT+BLESETKEY=123456

AT+BLEHIDINIT?

Function: to check the initialization status of BLE HID profile.

+BLEHIDINIT:0

OK

+BLEHIDINIT:1

OK

AT+BLEHIDINIT=<init>

Function: to initialize the BLE HID device profile.

OK

af://n3127

0: deinit ble hid device profile
1: init ble hid device profile

Notes:

The BLE HID command cannot be used at the same time with general GATT/GAP commands.

Example:

5.38 [ESP32 Only][AT+BLEHIDKB](#BLE-AT)—Send BLE HID
Keyboard information

Set Command:

Response:

Parameter:

<Modifier_keys>: Modifier keys mask
<key_1>: key code 1
<key_2>: key code 2
<key_3>: key code 3
<key_4>: key code 4
<key_5>: key code 5
<key_6>: key code 6

Example:

5.39 [ESP32 Only][AT+BLEHIDMUS](#BLE-AT)—Send BLE HID
mouse information

Set Command:

Response:

Parameter:

<buttons>: mouse button
<X_displacement>: X displacement

AT+BLEHIDINIT=1

AT+BLEHIDKB=<Modifier_keys>,<key_1>,<key_2>,<key_3>,<key_4>,<key_5>,<key_6>

Function: to send keyboard information.

OK

AT+BLEHIDKB=0,4,0,0,0,0,0 // input a

AT+BLEHIDMUS=<buttons>,<X_displacement>,<Y_displacement>,<wheel>

Function: to send mouse information.

OK

af://n3155
af://n3179

<Y_displacement>: Y displacement
<wheel>: Wheel

Example:

5.40 [ESP32 Only][AT+BLEHIDCONSUMER](#BLE-AT)—Send
BLE HID consumer information

Set Command:

Response:

Parameter:

<consumer_usage_id>: consumer id, such as power, reset, help, volume and so on.

Example:

6. [ESP32 Only] BLE AT Example

Below is an example of using two ESP32 modules, one as a BLE server (hereafter named "ESP32
Server"), the other one as a BLE client (hereafter named "ESP32 Client"). The example shows how
to use BLE functions with AT commands.
Notice:

The ESP32 Server needs to download a "service bin" into Flash to provide BLE services.

To learn how to generate a "service bin", please refer to esp-at/tools/readme.md.
The download address of the "service bin" is the address of "ble_data" in esp-
at/partitions_at.csv.

1. BLE initialization:

ESP32 Server:

ESP32 Client:

AT+BLEHIDMUS=0,10,10,0

AT+BLEHIDCONSUMER=<consumer_usage_id>

Function: to send consumer information.

OK

AT+BLEHIDCONSUMER=233 // volume up

Command:

AT+BLEINIT=2 // server role

Response:

OK

af://n3197
af://n3209

2. Establish BLE connection:

ESP32 Server:
(1) Query the BLE address. For example, its address is "24:0a:c4:03:f4:d6".

(2) Start advertising.

ESP32 Client:
(1) Start scanning.

(2) Establish the BLE connection, when the server is scanned successfully.

Notes:

If the BLE connection is established successfully, it will prompt +BLECONN:
<conn_index>,<remote_BLE_address>
If the BLE connection is broken, it will prompt +BLEDISCONN:<conn_index>,
<remote_BLE_address>

3. Read/Write a characteristic:

ESP32 Server:
(1) Create services.

Command:

AT+BLEINIT=1 // client role

Response:

OK

Command:

AT+BLEADDR? // get server's BLE address

Response:

+BLEADDR:24:0a:c4:03:f4:d6

OK

Command:

AT+BLEADDR? // get server's BLE address

Response:

+BLEADDR:24:0a:c4:03:f4:d6

OK

Command:

AT+BLESCAN=1,3

Response:

+BLESCAN:<BLE address>,<rssi>,<adv_data>,<scan_rsp_data>

OK

AT+BLECONN=0,"24:0a:c4:03:f4:d6"

Response:

OK

+BLECONN:0,"24:0a:c4:03:f4:d6"

(2) Start services.

(3) Discover characteristics.

ESP32 Client:
(1) Discover services.

Notice:

When discovering services, the ESP32 Client will get two more default services
(UUID:0x1800 and 0x1801) than what the ESP32 Server will get.
So, for the same service, the <srv_index> received by the ESP32 Client equals the
<srv_index> received by ESP32 Server + 2.
For example, the <srv_index> of the above-mentioned service, 0xA002, is 3 when the
ESP32 Client is in the process of discovering services. But if the ESP32 Server tries to
discover it with command AT+BLEGATTSSRV? , the <srv_index> will be 1.

(2) Discover characteristics.

AT+BLEGATTSSRVCRE

Response:

OK

AT+BLEGATTSSRVSTART

Response:

OK

AT+BLEGATTSCHAR?

Response:

+BLEGATTSCHAR:"char",1,1,0xC300

+BLEGATTSCHAR:"desc",1,1,1

+BLEGATTSCHAR:"char",1,2,0xC301

+BLEGATTSCHAR:"desc",1,2,1

+BLEGATTSCHAR:"char",1,3,0xC302

+BLEGATTSCHAR:"desc",1,3,1

OK

AT+BLEGATTCPRIMSRV=0

Response:

+BLEGATTCPRIMSRV:0,1,0x1801,1

+BLEGATTCPRIMSRV:0,2,0x1800,1

+BLEGATTCPRIMSRV:0,3,0xA002,1

OK

AT+BLEGATTCCHAR=0,3

Response:

+BLEGATTCCHAR:"char",0,3,1,0xC300,2

+BLEGATTCCHAR:"desc",0,3,1,1,0x2901

+BLEGATTCCHAR:"char",0,3,2,0xC301,2

+BLEGATTCCHAR:"desc",0,3,2,1,0x2901

(3) Read a characteristic. Please note that the target characteristic's property has to support
the read operation.

Note:

If the ESP32 Client reads the characteristic successfully, message +READ:<conn_index>,
<remote BLE address> will be prompted on the ESP32 Server side.

(4) Write a characteristic. Please note that the target characteristic's property has to support
the write operation.

Note:

If the ESP32 Client writes the characteristic successfully, message +WRITE:
<conn_index>,<srv_index>,<char_index>,[<desc_index>],<len>,<value> will be
prompted on the ESP32 Server side.

4. Notify of a characteristic:

ESP32 Client:
(1) Configure the characteristic's descriptor. Please note that the target characteristic's
property has to support notifications.

Note:

If the ESP32 Client writes the descriptor successfully, message +WRITE:<conn_index>,
<srv_index>,<char_index>,<desc_index>,<len>,<value> will be prompted on the
ESP32 Server side.

+BLEGATTCCHAR:"char",0,3,3,0xC302,8

+BLEGATTCCHAR:"desc",0,3,3,1,0x2901

+BLEGATTCCHAR:"char",0,3,4,0xC303,4

+BLEGATTCCHAR:"desc",0,3,4,1,0x2901

+BLEGATTCCHAR:"char",0,3,5,0xC304,8

+BLEGATTCCHAR:"char",0,3,6,0xC305,16

+BLEGATTCCHAR:"desc",0,3,6,1,0x2902

+BLEGATTCCHAR:"char",0,3,7,0xC306,32

+BLEGATTCCHAR:"desc",0,3,7,1,0x2902

OK

AT+BLEGATTCRD=0,3,1

Response:

+BLEGATTCRD:0,1,30

OK

AT+BLEGATTCWR=0,3,3,,2

Response:

> // waiting for data

OK

AT+BLEGATTCWR=0,3,6,1,2

Response:

> // waiting for data

OK

ESP32 Server:
(1) Notify of a characteristic. Please note that the target characteristic's property has to
support notifications.

Note:

If the ESP32 Client receives the notification, it will prompt message +NOTIFY:
<conn_index>,<srv_index>,<char_index>,<len>,<value> .
For the same service, the <srv_index> on the ESP32 Client side equals the <srv_index>
on the ESP32 Server side + 2.

5. Indicate a characteristic:

ESP32 Client:
(1) Configure the characteristic's descriptor. Please note that the target characteristic's
property has to support the indicate operation.

Note:

If the ESP32 Client writes the descriptor successfully, message +WRITE:<conn_index>,
<srv_index>,<char_index>,<desc_index>,<len>,<value> will be prompted on the
ESP32 Server side.

ESP32 Server:
(1) Indicate characteristic. Please note that the target characteristic's property has to support
the indicate operation.

Note:

If the ESP32 Client receives the indication, it will prompt message +INDICATE:
<conn_index>,<srv_index>,<char_index>,<len>,<value>

For the same service, the <srv_index> on the ESP32 Client side equals the <srv_index>
on the ESP32 Server side + 2.

7 [ESP32 Only] ETH AT Commands

7.1 [ESP32 Only] AT+CIPETHMAC—Sets the MAC Address of
the ESP32 Ethernet

AT+BLEGATTSNTFY=0,1,6,3

Response:

> // waiting for data

OK

AT+BLEGATTCWR=0,3,7,1,2

Response:

> // waiting for data

OK

AT+BLEGATTSIND=0,1,7,3

Response:

> // waiting for data

OK

af://n3306
af://n3308

Query Command:

Response:

Set Command:

Response:

Parameters:

<mac>: string parameter, MAC address of the ESP8266 Ethernet.

Notes:

The configuration changes will be saved in the NVS area.

The MAC address of ESP32 SoftAP is different from that of the ESP32 Station. Please make
sure that you do not set the same MAC address for both of them.

Bit 0 of the ESP32 MAC address CANNOT be 1.

For example, a MAC address can be "1a:…" but not "15:…".
FF:FF:FF:FF:FF:FF and 00:00:00:00:00:00 are invalid MAC and cannot be set.

Example:

7.2 [ESP32 Only] AT+CIPETH—Sets the IP Address of the ESP32
Ethernet

Query Command:

Response:

AT+CIPETHMAC?

Function: to obtain the MAC address of the ESP32 Ethernet.

+CIPETHMAC:<mac>

OK

AT+CIPETHMAC =<mac>

Function: to set the MAC address of the ESP32 Ethernet.

OK

AT+CIPETHMAC ="1a:fe:35:98:d4:7b"

AT+CIPETH?

Function: to obtain the IP address of the ESP32 Ethernet.

Notice: Only after calling esp_at_eth_cmd_regist can its IP address be queried.

+CIPETH:ip:<ip>

+CIPETH:gateway:<gateway>

+CIPETH:netmask:<netmask>

OK

af://n3337

Set Command:

Response:

Parameters:

<ip>: string parameter, the IP address of the ESP32 Ethernet.
[<gateway>]: gateway.
[<netmask>]: netmask.

Notes:

The configuration changes will be saved in the NVS area.

The set command interacts with DHCP-related AT commands (AT+CWDHCP-related
commands):

If static IP is enabled, DHCP will be disabled;
If DHCP is enabled, static IP will be disabled;
Whether it is DHCP or static IP that is enabled depends on the last configuration.

Example:

8. [ESP32 Only] BT-Related AT Commands

8.1 [ESP32 Only] AT+BTINIT—Classic Bluetooth initialization

Query Command:

Response:

If classic bluetooth is not initialized, it will return:

If classic bluetooth is initialized, it will return:

Set Command:

AT+CIPETH=<ip>[,<gateway>,<netmask>]

Function: to set the IP address of the ESP32 Ethernet.

OK

AT+CIPETH="192.168.6.100","192.168.6.1","255.255.255.0"

AT+BTINIT?

Function: to check the initialization status of classic bluetooth.

+BTINIT:0

OK

+BTINIT:1

OK

af://n3369
af://n3371

Response:

Parameter:

<init>:

0: deinit classic bluetooth
1: init classic bluetooth

Example:

8.2 [ESP32 Only] AT+BTNAME—Sets BT device's name

Query Command:

Response:

Set Command:

Response:

Parameter:

<device_name>: the classic bluetooth device name

Notes:

The default classic bluetooth device name is "ESP32_AT".

Example:

8.3 [ESP32 Only] AT+BTSCANMODE—Sets BT SCAN mode

Set Command:

AT+BTINIT=<init>

Function: to init or deinit classic bluetooth.

OK

AT+BTINIT=1

AT+BTNAME?

Function: to get the classic bluetooth device name.

+BTNAME:<device_name>

OK

AT+BTNAME=<device_name>

Function: to set the classic bluetooth device name, The maximum length is 248.

OK

AT+BTNAME="esp_demo"

af://n3395
af://n3415

Response:

Parameters:

<scan_mode>:

0: Neither discoverable nor connectable
1: Connectable but not discoverable
2: both discoverable and connectable

Example:

8.4 [ESP32 Only] AT+BTSTARTDISC—Start BT discovery

Set Command:

Response:

Parameters:

<inq_mode>:

0: General inquiry mode
1: Limited inquiry mode

<inq_len>: inquiry duration, ranging from 0x01 to 0x30

<inq_num_rsps>: number of inquiry responses that can be received, value 0 indicates an
unlimited number of responses

<bt_addr>: bluetooth address

<dev_name>: device name

<major_dev_class>:

0x0: Miscellaneous
0x1: Computer
0x2: Phone(cellular, cordless, pay phone, modem)
0x3: LAN, Network Access Point
0x4: Miscellaneous
0x5: Peripheral(mouse, joystick, keyboard)
0x6: Imaging(printer, scanner, camera, display)

AT+BTSCANMODE=<scan_mode>

Function: to set the scan mode of classic bluetooth.

OK

AT+BTSCANMODE=2 // both discoverable and connectable

AT+BTSTARTDISC=<inq_mode>,<inq_len>,<inq_num_rsps>

Function: to set the scan mode of classic bluetooth.

+BTSTARTDISC:<bt_addr>,<dev_name>,<major_dev_class>,<minor_dev_class>,

<major_srv_class>,<rssi>

OK

af://n3434

0x7: Wearable
0x8: Toy
0x9: Health
0x1F: Uncategorized: device not specified

<minor_dev_class>

please refer to this web
<major_srv_class>:

0x0: None indicates an invalid value
0x1: Limited Discoverable Mode
0x8: Positioning (Location identification)
0x10: Networking, e.g. LAN, Ad hoc
0x20: Rendering, e.g. Printing, Speakers
0x40: Capturing, e.g. Scanner, Microphone
0x80: Object Transfer, e.g. v-Inbox, v-Folder
0x100: Audio, e.g. Speaker, Microphone, Headerset service
0x200: Telephony, e.g. Cordless telephony, Modem, Headset service
0x400: Information, e.g., WEB-server, WAP-server

<rssi>: signal strength

Example:

8.5 [ESP32 Only] AT+BTSPPINIT—Classic Bluetooth SPP profile
initialization

Query Command:

Response:

If classic bluetooth SPP profile is not initialized, it will return:

If classic bluetooth SPP profile is initialized, it will return:

Set Command:

Response:

AT+BTINIT=1

AT+BTSCANMODE=2

AT+BTSTARTDISC=0,10,10

AT+BTSPPINIT?

Function: to check the initialization status of classic bluetooth SPP profile.

+BTSPPINIT:0

OK

+BTSPPINIT:1

OK

AT+BTSPPINIT=<init>

Function: to init or deinit classic bluetooth SPP profile.

https://www.bluetooth.com/specifications/assigned-numbers/baseband
af://n3514

Parameter:

<init>:

0: deinit classic bluetooth SPP profile
1: init classic bluetooth SPP profile, the role is master
2: init classic bluetooth SPP profile, the role is slave

Example:

8.6 [ESP32 Only] AT+BTSPPCONN—Establishes SPP
connection

Query Command:

Response:

If the connection has not been established, there will be return +BTSPPCONN:-1 .
Set Command:

Response:

It will prompt the following message, if the connection is established successfully:

It will prompt the following message, if NOT:

Parameters:

<conn_index>: index of classic bluetooth spp connection; only 0 is supported for the single
connection right now.

<sec_mode>：

OK

AT+BTSPPINIT=1 //master

AT+BTSPPINIT=2 //slave

AT+BTSPPCONN?

Function: to query classic bluetooth SPP connection.

+BTSPPCONN:<conn_index>,<remote_address>

OK

AT+BTSPPCONN=<conn_index>,<sec_mode>,<remote_address>

Function: to establish the classic bluetooth SPP connection.

OK

+BTSPPCONN:<conn_index>,<remote_address>

+BTSPPCONN:<conn_index>,-1

af://n3540

0x0000 : No security
0x0001 : Authorization required (only needed for out going connection)
0x0012 : Authentication required.
0x0024 : Encryption required.
0x0040 : Mode 4 level 4 service, i.e. incoming/outgoing MITM and P-256 encryption
0x3000 : Man-In-The-Middle protection
0x4000 : Min 16 digit for pin code

<remote_address>：remote classic bluetooth spp device address

Example:

8.7 [ESP32 Only] AT+BTSPPDISCONN—Ends SPP connection

Execute Command:

Response:

If the command is successful, it will prompt:

Parameter:

<conn_index>: index of classic bluetooth SPP connection; only 0 is supported for the single
connection right now.
<remote_address>：remote classic bluetooth A2DP device address.

Example:

8.8 [ESP32 Only] AT+BTSPPSEND—Sends data to remote
classic bluetooth spp device

Execute Command:

Response:

Execute Command:

AT+BTSPPCONN=0,0,"24:0a:c4:09:34:23"

AT+BTSPPDISCONN=<conn_index>

Function: to end the classic bluetooth SPP connection.

OK

+BTSPPDISCONN:<conn_index>,<remote_address>

AT+BTSPPDISCONN=0

AT+BTSPPSEND

Function: Enter BT SPP mode.

>

af://n3579
af://n3595

Response:

Parameter:

<conn_index>: index of classic bluetooth SPP connection; only 0 is supported for the single
connection right now.
<data_len>: the length of the data which was ready to send.

Notes:

The wrap return is > after this command is executed. Then, ESP32 enters UART-BT
passthrough mode. When a single packet containing +++ is received, ESP32 returns to
normal command mode. Please wait for at least one second before sending the next AT
command.

Example:

8.9 [ESP32 Only] AT+BTSPPSTART—Start the classic bluetooth
SPP profile.

Execute Command:

Response:

Example:

8.10 [ESP32 Only] AT+BTA2DPINIT—Classic Bluetooth A2DP
profile initialization

Query Command:

Response:

If classic bluetooth A2DP profile is not initialized, it will return

AT+BTSPPSEND=<conn_index>,<data_len>

Function: send data to the remote classic bluetooth SPP device.

OK

AT+BTSPPSEND=0,100

AT+BTSPPSEND

AT+BTSPPSTART

Function: start the classic bluetooth SPP profile.

OK

AT+BTSPPSTART

AT+BTA2DPINIT?

Function: to check the initialization status of classic bluetooth A2DP profile.

af://n3617
af://n3625

If classic bluetooth A2DP profile is initialized, it will return

Set Command:

Response:

Parameter:

<role>:

0: source
1: sink

<init_val>:

0: deinit classic bluetooth A2DP profile
1: init classic bluetooth A2DP profile

Example:

8.11 [ESP32 Only] AT+BTA2DPCONN—Establishes A2DP
connection

Query Command:

Response:

If the connection has not been established, there will NOT be <conn_index> and
<remote_address>
Set Command:

Response:

+BTA2DPINIT:0

OK

+BTA2DPINIT:1

OK

AT+BTA2DPINIT=<role>,<init_val>

Function: to init or deinit classic bluetooth A2DP profile.

OK

AT+BTA2DPINIT=0,1

AT+BTA2DPCONN?

Function: to query classic bluetooth A2DP connection.

+BTA2DPCONN:<conn_index>,<remote_address>

OK

AT+BTA2DPCONN=<conn_index>,<remote_address>

Function: to establish the classic bluetooth A2DP connectionn.

af://n3656

It will prompt the message below, if the connection is established successfully:

It will prompt the message below, if NOT:

Parameters:

<conn_index>: index of classic bluetooth A2DP connection; only 0 is supported for the
single connection right now.
<remote_address>：remote classic bluetooth A2DP device address.

Example:

8.12 [ESP32 Only] AT+BTA2DPDISCONN—Ends A2DP
connection

Execute Command:

Response:

If the command is successful, it will prompt
 +BTA2DPDISCONN:<conn_index>,<remote_address>
Parameter:

<conn_index>: index of classic bluetooth A2DP connection; only 0 is supported for the
single connection right now.
<remote_address>：remote classic bluetooth A2DP device address.

Example:

8.13 [ESP32 Only] AT+BTA2DPSRC—Set or query the audio file
URL

Execute Command:

OK

+BTA2DPCONN:<conn_index>,<remote_address>

+BTA2DPCONN:<conn_index>,fail

AT+BTA2DPCONN=0,0,0,"24:0a:c4:09:34:23"

AT+BTA2DPDISCONN=<conn_index>

Function: to end the classic bluetooth A2DP connection.

OK

AT+BTA2DPDISCONN=0

AT+BTA2DPSRC=<conn_index>,<url>

Function: Set the audio file URL.

af://n3678
af://n3692

Response:

Query Command:

Response:

Parameter:

<conn_index>: index of classic bluetooth A2DP connection; only 0 is supported for the
single connection right now.
<url>: the path of the source file. HTTP HTTPS and FLASH are currently supported.
<type>: the type of audio file, such as "mp3".

Note:

Only mp3 format is currently supported.

Example:

8.14 [ESP32 Only] AT+BTA2DPCTRL—control the audio play

Execute Command:

Response:

Parameter:

<conn_index>: index of classic bluetooth A2DP connection; only 0 is supported for the
single connection right now.

<ctrl>: types of control.

0 : A2DP Sink, stop play
1 : A2DP Sink, start play
2 : A2DP Sink, forward
3 : A2DP Sink, backward
4 : A2DP Sink, fastward start
5 : A2DP Sink, fastward stop
0 : A2DP Source, stop play

OK

AT+BTA2DPSRC?

Function: to query the audio file URL.

+BTA2DPSRC:<url>,<type>

OK

AT+BTA2DPSRC="https://dl.espressif.com/dl/audio/ff-16b-2c-44100hz.mp3"

AT+BTA2DPSRC="flash://spiffs/zhifubao.mp3"

AT+BTA2DPCTRL=<conn_index>,<ctrl>

Function: control the audio play

OK

af://n3716

1 : A2DP Source, start play
2 : A2DP Source, suspend

Example:

8.15 [ESP32 Only] AT+BTSECPARAM—Set and query the
Classic Bluetooth security parameters

Query Command:

Response:

Set Command:

Response:

Parameters:

<io_cap>: io capability.

0 : DisplayOnly
1 : DisplayYesNo
2 : KeyboardOnly
3 : NoInputNoOutput

<pin_type>：Use variable or fixed PIN.

0 : variable
1 : fixed

<pin_code>: Legacy Pair PIN Code (upto 16 bytes).

Notes:

If pin_type is variable, pin_code will be ignored,

Example:

8.16 [ESP32 Only] AT+BTKEYREPLY—Input Simple Pair Key

Execute Command:

AT+BTA2DPCTRL=0,1 // start play audio

AT+BTSECPARAM?

Function: to query classic bluetooth security parameters.

+BTSECPARAM:<io_cap>,<pin_type>,<pin_code>

OK

AT+BTSECPARAM=<io_cap>,<pin_type>,<pin_code>

Function: set the Classic Bluetooth security parameters.

OK

AT+BTSECPARAM=3,1,"9527"

af://n3749
af://n3787

Response:

Parameter:

<conn_index>: index of classic bluetooth connection; Currently only 0 is supported for the
single connection.
<Key>: the Simple Pair Key.

Example:

8.17 [ESP32 Only] AT+BTPINREPLY—Input the Legacy Pair PIN
Code

Execute Command:

Response:

Parameter:

<conn_index>: index of classic bluetooth connection; Currently only 0 is supported for the
single connection.
<Pin>: the Legacy Pair PIN Code.

Example:

8.18 [ESP32 Only] AT+BTSECCFM—Reply the confirm value to
the peer device in the legacy connection stage

Execute Command:

Response:

AT+BTKEYREPLY=<conn_index>,<Key>

Function: Input the Simple Pair Key.

OK

AT+BTKEYREPLY=0,123456

AT+BTPINREPLY=<conn_index>,<Pin>

Function: Input the Legacy Pair PIN Code.

OK

AT+BTPINREPLY=0,"6688"

AT+BTSECCFM=<conn_index>,<accept>

Function: Reply the confirm value to the peer device in the legacy connection

stage.

OK

af://n3801
af://n3815

Parameter:

<conn_index>: index of classic bluetooth connection; Currently only 0 is supported for the
single connection.

<accept>: reject or accept.

0 : reject
1 : accept

Example:

8.19 [ESP32 Only] AT+BTENCDEV—Query BT encryption
device list

Query Command:

Response:

Parameters:

<enc_dev_index>: index of the bonded devices.
<mac_address>: Mac address.

Example:

8.20 [ESP32 Only] AT+BTENCCLEAR—Clear BT encryption
device list

Set Command:

Response:

Execute Command:

AT+BTSECCFM=0,1

AT+BTENCDEV?

Function: to get the bonded devices.

+BTENCDEV:<enc_dev_index>,<mac_address>

OK

AT+BTENCDEV?

AT+BTENCCLEAR=<enc_dev_index>

Function: remove a device from the security database list with a specific index.

OK

AT+BLEENCCLEAR

Function: remove all devices from the security database.

af://n3834
af://n3848

Response:

Parameters:

<enc_dev_index>: index of the bonded devices.

Example:

9.[ESP32 Only] MQTT AT Commands List

9.1 AT+MQTTUSERCFG - Set MQTT User Config

Set Command:

Function:

Response:

Parameters:

<LinkID>: only supports link ID 0 for now

<scheme>:

1: MQTT over TCP
2: MQTT over TLS(no certificate verify)
3: MQTT over TLS(verify server certificate)
4: MQTT over TLS(provide client certificate)
5: MQTT over TLS(verify server certificate and provide client certificate)
6: MQTT over WebSocket(based on TCP)
7: MQTT over WebSocket Secure(based on TLS, no certificate verify)
8: MQTT over WebSocket Secure(based on TLS, verify server certificate)
9: MQTT over WebSocket Secure(based on TLS, provide client certificate)
10: MQTT over WebSocket Secure(based on TLS, verify server certificate and
provide client certificate)

<client_id>: MQTT client ID, max length 256Bytes

<username>: the user name to login to the MQTT broker, max length 64Bytes

<password>: the password to login to the MQTT broker, max length 64Bytes

<cert_key_ID>: certificate ID, only supports one certificate of ID 0 for now

<CA_ID>: CA ID, only supports one CA of ID 0 for now

OK

AT+BTENCCLEAR

AT+MQTTUSERCFG=<LinkID>,<scheme>,<"client_id">,<"username">,<"password">,

<cert_key_ID>,<CA_ID>,<"path">

Set MQTT User Config

OK

af://n3863
af://n3865

<path>: path of the resource, max length 32Bytes

Note:

The total length of the entire AT command should be less than 256Bytes.

9.2 AT+MQTTCONNCFG - Set configuration of MQTT
Connection

Set Command:

Function:

Response:

Parameters:

<LinkID>: only supports link ID 0 for now

<keepalive>: timeout of MQTT ping, range [60, 7200], unit:second. Default is 120s.

<disable_clean_session>: set MQTT clean session

0: enable clean session
1: disable clean session

<lwt_topic>: LWT (Last Will and Testament) message topic, max length 64Bytes

<lwt_msg>: LWT message, max length 64Bytes

<lwt_qos>: LWT QoS, can be set to 0, or 1, or 2. Default is 0.

<lwt_retain>: LWT retain, can be set to 0 or 1. Default is 0.

9.3 AT+MQTTCONN - Connect to MQTT Broker

Set Command:

Function:

Response:

Query Command:

AT+MQTTCONNCFG=<LinkID>,<keepalive>,<disable_clean_session>,<"lwt_topic">,

<"lwt_msg">,<lwt_qos>,<lwt_retain>

Set configuration of MQTT Connection

OK

AT+MQTTCONN=<LinkID>,<"host">,<port>,<reconnect>

Connect to a MQTT broker.

OK

af://n3916
af://n3946

Function:

Response:

Parameters:

<LinkID>: only supports link ID 0 for now

<host>: MQTT broker domain, max length 128Bytes

<port>: MQTT broker port, max is port 65535

<path>: path, max length 32Bytes

<reconnect>:

0: MQTT will not auto-reconnect
1: MQTT will auto-reconnect, it will take more resource

<state>: MQTT states

0: MQTT uninitialized
1: already set AT+MQTTUSERCFG
2: already set AT+MQTTCONNCFG
3: connection disconnected
4: connection established
5: connected, but did not subscribe to any topic
6: connected, and subscribed to MQTT topic

<scheme>:

1: MQTT over TCP`
2: MQTT over TLS(no certificate verify)
3: MQTT over TLS(verify server certificate)
4: MQTT over TLS(provide client certificate)
5: MQTT over TLS(verify server certificate and provide client certificate)`
6: MQTT over WebSocket(based on TCP)
7: MQTT over WebSocket Secure(based on TLS, no certificate verify)
8: MQTT over WebSocket Secure(based on TLS, verify server certificate)
9: MQTT over WebSocket Secure(based on TLS, provide client certificate)
10: MQTT over WebSocket Secure(based on TLS, verify server certificate and provide
client certificate)

9.4 AT+MQTTPUB - Publish MQTT message in string

Set Command:

Function:

AT+MQTTCONN?

Get the MQTT broker that the ESP chip connected to.

+MQTTCONN:<LinkID>,<state>,<scheme><"host">,<port>,<"path">,<reconnect>

OK

AT+MQTTPUB=<LinkID>,<"topic">,<"data">,<qos>,<retain>

af://n4017

Response:

Parameters:

<LinkID>: only supports link ID 0 for now
<topic>: MQTT topic, max length 64Bytes
<data>: MQTT message in string.
<qos>: qos of publish message, can be set to 0, or 1, or 2. Default is 0.
<retain>: retain flag

Note:

The total length of the entire AT command should be less than 256Bytes.
This command cannot send data \0 , if you need to send \0 , please use command
AT+MQTTPUBRAW instead.

9.5 AT+MQTTPUBRAW - Publish MQTT message in binary

Set Command:

Function:

Response:

Wrap return > after the Set Command. Begin receiving serial data. The AT firmware will keep
waiting until the data length defined by is met, all data received will be considered as the MQTT
publish message. When the data is met, the transmission of data starts.
And then it will respond as the following message.

Or

Parameters:

<LinkID>: only supports link ID 0 for now
<topic>: MQTT topic, max length 64Bytes

Publish MQTT message in string to defined topic. If you need to publish message

in binary, please use command `AT+MQTTPUBRAW` instead.

OK

AT+MQTTPUBRAW=<LinkID>,<"topic">,<length>,<qos>,<retain>

Publish MQTT message in binary to defined topic.

OK

>

+MQTTPUB:FAIL

+MQTTPUB:OK

af://n4043

<length>: length of MQTT message, max length is 1024 by default. Users can change the
max length limitation by setting MQTT_BUFFER_SIZE_BYTE in make menuconfig
<qos>: qos of publish message, can be set to 0, or 1, or 2. Default is 0.
<retain>: retain flag

9.6 AT+MQTTSUB - Subscribe to MQTT Topic

Set Command:

Function:

Response:

When received MQTT message of the subscribed topic, it will prompt:

If the topic has been subscribed before, it will prompt:
ALREADY SUBSCRIBE

Query Command:

Function:

Response:

Parameters:

<LinkID>: only supports link ID 0 for now

<state>: MQTT states

0: MQTT uninitialized
1: already set AT+MQTTUSERCFG
2: already set AT+MQTTCONNCFG
3: connection disconnected

AT+MQTTSUB=<LinkID>,<"topic">,<qos>

Subscribe to defined MQTT topic with defined QoS. It supports subscribing to

multiple topics.

OK

+MQTTSUBRECV:<LinkID>,<"topic">,<data_length>,data

AT+MQTTSUB?

Get all MQTT topics that already subscribed.

+MQTTSUB:<LinkID>,<state>,<"topic1">,<qos>

+MQTTSUB:<LinkID>,<state>,<"topic2">,<qos>

+MQTTSUB:<LinkID>,<state>,<"topic3">,<qos>

...

OK

af://n4067

4: connection established
5: connected, but did not subscribe to any topic
6: connected, and subscribed to MQTT topic

<topic>: the topic that subscribed to

<qos>: the QoS that subscribed to

9.7 AT+MQTTUNSUB - Unsubscribe from MQTT Topic

Set Command:

Function:

Response:

Parameters:

<LinkID>: only supports link ID 0 for now
<topic>: MQTT topic, max length 64Bytes

Note:

If the topic has not been subscribed, then the AT log will prompt NO UNSUBSCRIBE . And the
AT command will still respond OK .

9.8 AT+MQTTCLEAN - Close the MQTT Connection

Set Command:

Function:

Response:

Parameters:

<LinkID>: only supports link ID 0 for now

9.9 MQTT Error Codes

The MQTT Error code will be prompt as ERR CODE:0x<%08x> .

AT+MQTTUNSUB=<LinkID>,<"topic">

 Unsubscribe the client from defined topic. This command can be called multiple

times to unsubscribe from differrent topics.

OK

AT+MQTTCLEAN=<LinkID>

Close the MQTT connection, and release the resource.

OK

af://n4109
af://n4127
af://n4139

 AT_MQTT_NO_CONFIGURED, // 0x6001

 AT_MQTT_NOT_IN_CONFIGURED_STATE, // 0x6002

 AT_MQTT_UNINITIATED_OR_ALREADY_CLEAN, // 0x6003

 AT_MQTT_ALREADY_CONNECTED, // 0x6004

 AT_MQTT_MALLOC_FAILED, // 0x6005

 AT_MQTT_NULL_LINK, // 0x6006

 AT_MQTT_NULL_PARAMTER, // 0x6007

 AT_MQTT_PARAMETER_COUNTS_IS_WRONG, // 0x6008

 AT_MQTT_TLS_CONFIG_ERROR, // 0x6009

 AT_MQTT_PARAM_PREPARE_ERROR, // 0x600A

 AT_MQTT_CLIENT_START_FAILED, // 0x600B

 AT_MQTT_CLIENT_PUBLISH_FAILED, // 0x600C

 AT_MQTT_CLIENT_SUBSCRIBE_FAILED, // 0x600D

 AT_MQTT_CLIENT_UNSUBSCRIBE_FAILED, // 0x600E

 AT_MQTT_CLIENT_DISCONNECT_FAILED, // 0x600F

 AT_MQTT_LINK_ID_READ_FAILED, // 0x6010

 AT_MQTT_LINK_ID_VALUE_IS_WRONG, // 0x6011

 AT_MQTT_SCHEME_READ_FAILED, // 0x6012

 AT_MQTT_SCHEME_VALUE_IS_WRONG, // 0x6013

 AT_MQTT_CLIENT_ID_READ_FAILED, // 0x6014

 AT_MQTT_CLIENT_ID_IS_NULL, // 0x6015

 AT_MQTT_CLIENT_ID_IS_OVERLENGTH, // 0x6016

 AT_MQTT_USERNAME_READ_FAILED, // 0x6017

 AT_MQTT_USERNAME_IS_NULL, // 0x6018

 AT_MQTT_USERNAME_IS_OVERLENGTH, // 0x6019

 AT_MQTT_PASSWORD_READ_FAILED, // 0x601A

 AT_MQTT_PASSWORD_IS_NULL, // 0x601B

 AT_MQTT_PASSWORD_IS_OVERLENGTH, // 0x601C

 AT_MQTT_CERT_KEY_ID_READ_FAILED, // 0x601D

 AT_MQTT_CERT_KEY_ID_VALUE_IS_WRONG, // 0x601E

 AT_MQTT_CA_ID_READ_FAILED, // 0x601F

 AT_MQTT_CA_ID_VALUE_IS_WRONG, // 0x6020

 AT_MQTT_CA_LENGTH_ERROR, // 0x6021

 AT_MQTT_CA_READ_FAILED, // 0x6022

 AT_MQTT_CERT_LENGTH_ERROR, // 0x6023

 AT_MQTT_CERT_READ_FAILED, // 0x6024

 AT_MQTT_KEY_LENGTH_ERROR, // 0x6025

 AT_MQTT_KEY_READ_FAILED, // 0x6026

 AT_MQTT_PATH_READ_FAILED, // 0x6027

 AT_MQTT_PATH_IS_NULL, // 0x6028

 AT_MQTT_PATH_IS_OVERLENGTH, // 0x6029

 AT_MQTT_VERSION_READ_FAILED, // 0x602A

 AT_MQTT_KEEPALIVE_READ_FAILED, // 0x602B

 AT_MQTT_KEEPALIVE_IS_NULL, // 0x602C

 AT_MQTT_KEEPALIVE_VALUE_IS_WRONG, // 0x602D

 AT_MQTT_DISABLE_CLEAN_SESSION_READ_FAILED, // 0x602E

 AT_MQTT_DISABLE_CLEAN_SESSION_VALUE_IS_WRONG, // 0x602F

 AT_MQTT_LWT_TOPIC_READ_FAILED, // 0x6030

 AT_MQTT_LWT_TOPIC_IS_NULL, // 0x6031

 AT_MQTT_LWT_TOPIC_IS_OVERLENGTH, // 0x6032

 AT_MQTT_LWT_MSG_READ_FAILED, // 0x6033

 AT_MQTT_LWT_MSG_IS_NULL, // 0x6034

 AT_MQTT_LWT_MSG_IS_OVERLENGTH, // 0x6035

 AT_MQTT_LWT_QOS_READ_FAILED, // 0x6036

 AT_MQTT_LWT_QOS_VALUE_IS_WRONG, // 0x6037

 AT_MQTT_LWT_RETAIN_READ_FAILED, // 0x6038

 AT_MQTT_LWT_RETAIN_VALUE_IS_WRONG, // 0x6039

 AT_MQTT_HOST_READ_FAILED, // 0x603A

9.10 MQTT Notes

In general, AT MQTT commands will be responded within 10s, except command
AT+MQTTCONN .For example, if the router fails to access to the internet, the command
AT+MQTTPUB will respond within 10s. But the command AT+MQTTCONN may need more time
due to the packet retransmission in bad network environment.
If the AT+MQTTCONN is based on a TLS connection, the timeout of each packet is 10s, then
the total timeout will be much longer depending on the handshake packets count.
When the MQTT connection ends, it will prompt message +MQTTDISCONNECTED:<LinkID>
When the MQTT connection established, it will prompt message +MQTTCONNECTED:
<LinkID>,<scheme>,<"host">,port,<"path">,<reconnect>

9.11 Example 1: MQTT over TCP (with a Local MQTT Broker)

Create a local MQTT broker. For example, the MQTT broker's IP address is "192.168.31.113", port
1883. Then the example of communicating with the MQTT broker will be as the following steps.

9.12 Example 2: MQTT over TLS (with a Local MQTT Broker)

Create a local MQTT broker. For example, the MQTT broker's IP address is "192.168.31.113", port
1883. Then the example of communicating with the MQTT broker will be as the following steps.

 AT_MQTT_HOST_IS_NULL, // 0x603B

 AT_MQTT_HOST_IS_OVERLENGTH, // 0x603C

 AT_MQTT_PORT_READ_FAILED, // 0x603D

 AT_MQTT_PORT_VALUE_IS_WRONG, // 0x603E

 AT_MQTT_RECONNECT_READ_FAILED, // 0x603F

 AT_MQTT_RECONNECT_VALUE_IS_WRONG, // 0x6040

 AT_MQTT_TOPIC_READ_FAILED, // 0x6041

 AT_MQTT_TOPIC_IS_NULL, // 0x6042

 AT_MQTT_TOPIC_IS_OVERLENGTH, // 0x6043

 AT_MQTT_DATA_READ_FAILED, // 0x6044

 AT_MQTT_DATA_IS_NULL, // 0x6045

 AT_MQTT_DATA_IS_OVERLENGTH, // 0x6046

 AT_MQTT_QOS_READ_FAILED, // 0x6047

 AT_MQTT_QOS_VALUE_IS_WRONG, // 0x6048

 AT_MQTT_RETAIN_READ_FAILED, // 0x6049

 AT_MQTT_RETAIN_VALUE_IS_WRONG, // 0x604A

 AT_MQTT_PUBLISH_LENGTH_READ_FAILED, // 0x604B

 AT_MQTT_PUBLISH_LENGTH_VALUE_IS_WRONG, // 0x604C

 AT_MQTT_RECV_LENGTH_IS_WRONG, // 0x604D

 AT_MQTT_CREATE_SEMA_FAILED, // 0x604E

 AT_MQTT_CREATE_EVENT_GROUP_FAILED, // 0x604F

AT+MQTTUSERCFG=0,1,"ESP32","espressif","1234567890",0,0,""

AT+MQTTCONN=0,"192.168.31.113",1883,0

AT+MQTTSUB=0,"topic",1

AT+MQTTPUB=0,"topic","test",1,0

AT+MQTTCLEAN=0

af://n4143
af://n4154
af://n4158

9.13 Example 3: MQTT over WSS

This is an example of communicating with MQTT broker: iot.eclipse.org, of which port is 443.

10. HTTP AT Command

10.1 AT+HTTPCLIENT-Send HTTP Client Request

Set Command:

Response:

Parameters:

<opt> : method of HTTP client request

1 : HEAD
2 : GET
3 : POST
4 : PUT
5 : DELETE

<content-type> : date type of HTTP client request

0 : application/x-www-form-urlencoded

1 : application/json
2 : multipart/form-data

3 : text/xml
<url> : optional parameter, HTTP URL, The url field can override the host and path
parameters if they are null.

<host>: optional parameter, domain name or IP address

<path>: optional parameter, HTTP Path

AT+CIPSNTPCFG=1,8,"ntp1.aliyun.com"

AT+CIPSNTPTIME?

AT+MQTTUSERCFG=0,3,"ESP32","espressif","1234567890",0,0,""

AT+MQTTCONNCFG=0,0,0,"lwtt","lwtm",0,0

AT+MQTTCONN=0,"192.168.31.113",1883,0

AT+MQTTSUB=0,"topic",1

AT+MQTTPUB=0,"topic","test",1,0

AT+MQTTCLEAN=0

AT+CIPSNTPCFG=1,8,"ntp1.aliyun.com"

AT+CIPSNTPTIME?

AT+MQTTUSERCFG=0,7,"ESP32","espressif","1234567890",0,0,"wss"

AT+MQTTCONN=0,"iot.eclipse.org",443,0

AT+MQTTSUB=0,"topic",1

AT+MQTTPUB=0,"topic","test",1,0

AT+MQTTCLEAN=0

AT+HTTPCLIENT=<opt>,[<url>],[<host>],[<path>],<transport_type>,[<data>]

OK

af://n4162
af://n4165
af://n4167

<transport_type>： HTTP Client transport type, default is 0.

0 : HTTP_TRANSPORT_UNKNOWN
1 : HTTP_TRANSPORT_OVER_TCP
2 : HTTP_TRANSPORT_OVER_SSL

<data>：optional parameter. When it is a POST request, <data> is the user data sent to
HTTP server.

Note:

If <url> is omitted, <host> and <path> must be set.

Example:

10.2 HTTP Error Code

HTTP Client:

//HEAD Request

AT+HTTPCLIENT=1,0,"http://httpbin.org/get","httpbin.org","/get",1

AT+HTTPCLIENT=1,0,"http://httpbin.org/get",,,0

AT+HTTPCLIENT=1,0,"httpbin.org","/get",1

//GET Request

AT+HTTPCLIENT=2,0,"http://httpbin.org/get","httpbin.org","/get",1

AT+HTTPCLIENT=2,0,"http://httpbin.org/get",,,0

AT+HTTPCLIENT=2,0,,"httpbin.org","/get",1

//POST Request

AT+HTTPCLIENT=3,0,"http://httpbin.org/post","httpbin.org","/post",1,"field1=valu

e1&field2=value2"

AT+HTTPCLIENT=3,0,"http://httpbin.org/post",,,0,"field1=value1&field2=value

af://n4222

HTTP Client Error Code Description

0x7190 Bad Request

0x7191 Unauthorized

0x7192 Payment Required

0x7193 Forbidden

0x7194 Not Found

0x7195 Method Not Allowed

0x7196 Not Acceptable

0x7197 Proxy Authentication Required

0x7198 Request Timeout

0x7199 Conflict

0x719a Gone

0x719b Length Required

0x719c Precondition Failed

0x719d Request Entity Too Large

0x719e Request-URI Too Long

0x719f Unsupported Media Type

0x71a0 Requested Range Not Satisfiable

0x71a1 Eectation Failed

HTTP Server Error Code Description

0x71f4 Internal Server Error

0x71f5 Not Implemented

0x71f6 Bad Gateway

0x71f7 Service Unavailable

0x71f8 Gateway Timeout

0x71f9 HTTP Version Not Supported

HTTP Server:

HTTP AT:
The error code of command AT+HTTP will be 0x7000+Standard HTTP Error Code .
For example, if it gets the HTTP error 404 when calling command AT+HTTP , then the AT will
respond error code as 0x7194 , hex(0x7000+404)=0x7194 .

More details of Standard HTTP/1.1 Error Code are in RFC 2616: https://tools.ietf.org/html/rfc2616

https://tools.ietf.org/html/rfc2616
af://n4314

Appendix. How to generate an ESP8266 AT firmware

1. Download the master branch of https://github.com/espressif/esp-at
2. Change the Makefile from

export ESP_AT_PROJECT_PLATFORM ?= PLATFORM_ESP32

export ESP_AT_MODULE_NAME ?= WROOM-32

to be

export ESP_AT_PROJECT_PLATFORM ?= PLATFORM_ESP8266

export ESP_AT_MODULE_NAME ?= WROOM-02

3. Compile the esp-at project to get the ESP8266 AT firmware.
4. More details are in the esp-at/docs/How_to_Add_New_Platforom.

af://n4314
https://github.com/espressif/esp-at

	ESP AT Commands Set
	1. AT Commands List
	1.1 Basic AT Commands List
	1.2 Wi-Fi AT Commands List
	1.3 TCP/IP-Related AT Commands List
	1.4 [ESP32 Only] BLE AT Commands List
	1.5 [ESP32 Only] ETH AT Commands List
	1.6 [ESP32 Only] BT AT Commands List
	1.7 [ESP32 Only] MQTT AT Commands List
	1.8 HTTP AT Command List

	2. Basic AT Commands
	2.1 AT—Tests AT Startup
	2.2 AT+RST—Restarts the Module
	2.3 AT+GMR—Checks Version Information
	2.4 AT+GSLP—Enters Deep-sleep Mode
	2.5 ATE—AT Commands Echoing
	2.6 AT+RESTORE—Restores the Factory Default Settings
	2.7 AT+UART_CUR—Current UART Configuration, Not Saved in Flash
	2.8 AT+UART_DEF—Default UART Configuration, Saved in Flash
	2.9 AT+SLEEP—Sets the Sleep Mode
	2.10 AT+SYSRAM—Checks the Remaining Space of RAM
	2.11 AT+SYSMSG—Control to use new or old information
	2.12 [ESP32 Only] AT+SYSFLASH—Set User Partitions in Flash
	2.13 [ESP32 Only] AT+FS—Filesystem Operations
	2.14 AT+RFPOWER-Set RF TX Power
	2.15 AT+SYSROLLBACK-Roll back to the previous firmware
	2.16 AT+SYSTIMESTAMP—Set local time stamp.
	2.17 AT+SYSLOG : Enable or disable the AT error code prompt.
	2.18 AT+SYSLSP—Enters light-sleep mode (Only Support ESP32)
	2.19 AT+SYSLSPCFG—Config the light-sleep wakeup source (Only Support ESP32)

	3 Wi-Fi AT Commands
	3.1 AT+CWMODE—Sets the Wi-Fi Mode (Station/SoftAP/Station+SoftAP)
	3.2 AT+CWJAP—Connects to an AP
	3.3 AT+CWLAPOPT—Sets the Configuration for the Command AT+CWLAP
	3.4 AT+CWLAP—Lists the Available APs
	3.5 AT+CWQAP—Disconnects from the AP
	3.6 AT+CWSAP—Configuration of the ESP32 SoftAP
	3.7 AT+CWLIF—IP of Stations to Which the ESP32 SoftAP is Connected
	3.8 AT+CWQIF—Disconnect Station from the ESP SoftAP
	3.9 AT+CWDHCP—Enables/Disables DHCP
	3.10 AT+CWDHCPS—Sets the IP Address Allocated by ESP32 SoftAP DHCP (The configuration is saved in Flash.)
	3.11 AT+CWAUTOCONN—Auto-Connects to the AP or Not
	3.12 AT+CIPSTAMAC—Sets the MAC Address of the ESP32 Station
	3.13 AT+CIPAPMAC—Sets the MAC Address of the ESP32 SoftAP
	3.14 AT+CIPSTA—Sets the IP Address of the ESP32 Station
	3.15 AT+CIPAP—Sets the IP Address of the ESP32 SoftAP
	3.16 AT+CWSTARTSMART—Starts SmartConfig
	3.17 AT+CWSTOPSMART—Stops SmartConfig
	3.18 AT+WPS—Enables the WPS Function
	3.19 AT+MDNS—Configurates the MDNS Function
	3.20 AT+CWJEAP—Connects to an WPA2 Enterprise AP.
	3.21 AT+CWHOSTNAME : Configures the Name of ESP Station

	4. TCP/IP-Related AT Commands
	4.1 AT+CIPSTATUS—Gets the Connection Status
	4.2 AT+CIPDOMAIN—Domain Name Resolution Function
	4.3 AT+CIPSTART—Establishes TCP Connection, UDP Transmission or SSL Connection
	4.3.1 Establish TCP Connection
	4.3.2 Establish UDP Transmission
	4.3.3 Establish SSL Connection

	4.4 AT+CIPSTARTEX—Establishes TCP connection, UDP transmission or SSL connection with automatically assigned ID
	4.5 AT+CIPSEND—Sends Data
	4.6 AT+CIPSENDEX—Sends Data
	4.7 AT+CIPCLOSE—Closes TCP/UDP/SSL Connection
	4.8 AT+CIFSR—Gets the Local IP Address
	4.9 AT+CIPMUX—Enables/Disables Multiple Connections
	4.10 AT+CIPSERVER—Deletes/Creates TCP or SSL Server
	4.11 AT+CIPSERVERMAXCONN—Set the Maximum Connections Allowed by Server
	4.12 AT+CIPMODE—Configures the Transmission Mode
	4.13 AT+SAVETRANSLINK—Saves the Transparent Transmission Link in Flash
	4.13.1 Save TCP Single Connection in Flash
	4.13.2 Save UDP Transmission in Flash

	4.14 AT+CIPSTO—Sets the TCP Server Timeout
	4.15 AT+CIPSNTPCFG—Sets the Time Zone and the SNTP Server
	4.16 AT+CIPSNTPTIME—Queries the SNTP Time
	4.17 AT+CIUPDATE—Updates the Software Through Wi-Fi
	4.18 AT+CIPDINFO—Shows the Remote IP and Port with "+IPD"
	4.19 +IPD—Receives Network Data
	4.20 AT+CIPSSLCCONF—Config SSL client
	4.21 AT+CIPRECONNINTV—Set Wi-Fi transparent transmitting auto-connect interval
	4.22 +IPD—Receives Network Data
	4.23 AT+CIPRECVMODE—Set Socket Receive Mode
	4.24 AT+CIPRECVDATA—Get Socket Data in Passive Receive Mode
	4.25 AT+CIPRECVLEN—Get Socket Data Length in Passive Receive Mode
	4.26 AT+PING: Ping Packets
	4.27 AT+CIPDNS : Configures Domain Name System.

	5. [ESP32 Only] BLE-Related AT Commands
	5.1 [ESP32 Only] AT+BLEINIT—BLE Initialization
	5.2 [ESP32 Only] AT+BLEADDR—Sets BLE Device's Address
	5.3 [ESP32 Only] AT+BLENAME—Sets BLE Device's Name
	5.4 [ESP32 Only] AT+BLESCANPARAM—Sets Parameters of BLE Scanning
	5.5 [ESP32 Only] AT+BLESCAN—Enables BLE Scanning
	5.6 [ESP32 Only] AT+BLESCANRSPDATA—Sets BLE Scan Response
	5.7 [ESP32 Only] AT+BLEADVPARAM—Sets Parameters of Advertising
	5.8 [ESP32 Only] AT+BLEADVDATA—Sets Advertising Data
	5.9 [ESP32 Only] AT+BLEADVSTART—Starts Advertising
	5.10 [ESP32 Only] AT+BLEADVSTOP—Stops Advertising
	5.11 [ESP32 Only] AT+BLECONN—Establishes BLE connection
	5.12 [ESP32 Only] AT+BLEDISCONN—Ends BLE connection
	5.13 [ESP32 Only] AT+BLEDATALEN—Sets BLE Data Packet Length
	5.14 [ESP32 Only] AT+BLECFGMTU—Sets BLE MTU Length
	5.15 [ESP32 Only] AT+BLEGATTSSRVCRE—GATTS Creates Services
	5.16 [ESP32 Only] AT+BLEGATTSSRVSTART—GATTS Starts Services
	5.17 [ESP32 Only] AT+BLEGATTSSRV—GATTS Discovers Services
	5.18 [ESP32 Only] AT+BLEGATTSCHAR—GATTS Discovers Characteristics
	5.19 [ESP32 Only] AT+BLEGATTSNTFY—GATTS Notifies of Characteristics
	5.20 [ESP32 Only] AT+BLEGATTSIND—GATTS Indicates Characteristics
	5.21 [ESP32 Only] AT+BLEGATTSSETATTR—GATTS Sets Characteristic
	5.22 [ESP32 Only] AT+BLEGATTCPRIMSRV—GATTC Discovers Primary Services
	5.23 [ESP32 Only] AT+BLEGATTCINCLSRV—GATTC Discovers Included Services
	5.24 [ESP32 Only] AT+BLEGATTCCHAR—GATTC Discovers Characteristics
	5.25 [ESP32 Only] AT+BLEGATTCRD—GATTC Reads a Characteristic
	5.26 [ESP32 Only] AT+BLEGATTCWR—GATTC Writes Characteristic
	5.27 [ESP32 Only] AT+BLESPPCFG—Sets BLE spp parameters
	5.28 [ESP32 Only] AT+BLESPP—Enter BLE spp mode
	5.29 [ESP32 Only] AT+BLESECPARAM—Set BLE encryption parameters
	5.30 [ESP32 Only] AT+BLEENC—Initiate BLE encryption request
	5.31 [ESP32 Only] AT+BLEENCRSP—Grant security request access
	5.32 [ESP32 Only] AT+BLEKEYREPLY—Reply the key value to the peer device in the lagecy connection stage
	5.33 [ESP32 Only] AT+BLECONFREPLY—Reply the comfirm value to the peer device in the lagecy connection stage
	5.34 [ESP32 Only] AT+BLEENCDEV—Query BLE encryption device list
	5.35 [ESP32 Only] AT+BLEENCCLEAR—Clear BLE encryption device list
	5.36 ESP32 Only(#BLE-AT)—Set BLE static pair key
	5.37 ESP32 Only(#BLE-AT)—BLE HID device profile initialization
	5.38 ESP32 Only(#BLE-AT)—Send BLE HID Keyboard information
	5.39 ESP32 Only(#BLE-AT)—Send BLE HID mouse information
	5.40 ESP32 Only(#BLE-AT)—Send BLE HID consumer information

	6. [ESP32 Only] BLE AT Example
	7 [ESP32 Only] ETH AT Commands
	7.1 [ESP32 Only] AT+CIPETHMAC—Sets the MAC Address of the ESP32 Ethernet
	7.2 [ESP32 Only] AT+CIPETH—Sets the IP Address of the ESP32 Ethernet

	8. [ESP32 Only] BT-Related AT Commands
	8.1 [ESP32 Only] AT+BTINIT—Classic Bluetooth initialization
	8.2 [ESP32 Only] AT+BTNAME—Sets BT device's name
	8.3 [ESP32 Only] AT+BTSCANMODE—Sets BT SCAN mode
	8.4 [ESP32 Only] AT+BTSTARTDISC—Start BT discovery
	8.5 [ESP32 Only] AT+BTSPPINIT—Classic Bluetooth SPP profile initialization
	8.6 [ESP32 Only] AT+BTSPPCONN—Establishes SPP connection
	8.7 [ESP32 Only] AT+BTSPPDISCONN—Ends SPP connection
	8.8 [ESP32 Only] AT+BTSPPSEND—Sends data to remote classic bluetooth spp device
	8.9 [ESP32 Only] AT+BTSPPSTART—Start the classic bluetooth SPP profile.
	8.10 [ESP32 Only] AT+BTA2DPINIT—Classic Bluetooth A2DP profile initialization
	8.11 [ESP32 Only] AT+BTA2DPCONN—Establishes A2DP connection
	8.12 [ESP32 Only] AT+BTA2DPDISCONN—Ends A2DP connection
	8.13 [ESP32 Only] AT+BTA2DPSRC—Set or query the audio file URL
	8.14 [ESP32 Only] AT+BTA2DPCTRL—control the audio play
	8.15 [ESP32 Only] AT+BTSECPARAM—Set and query the Classic Bluetooth security parameters
	8.16 [ESP32 Only] AT+BTKEYREPLY—Input Simple Pair Key
	8.17 [ESP32 Only] AT+BTPINREPLY—Input the Legacy Pair PIN Code
	8.18 [ESP32 Only] AT+BTSECCFM—Reply the confirm value to the peer device in the legacy connection stage
	8.19 [ESP32 Only] AT+BTENCDEV—Query BT encryption device list
	8.20 [ESP32 Only] AT+BTENCCLEAR—Clear BT encryption device list

	9.[ESP32 Only] MQTT AT Commands List
	9.1 AT+MQTTUSERCFG - Set MQTT User Config
	9.2 AT+MQTTCONNCFG - Set configuration of MQTT Connection
	9.3 AT+MQTTCONN - Connect to MQTT Broker
	9.4 AT+MQTTPUB - Publish MQTT message in string
	9.5 AT+MQTTPUBRAW - Publish MQTT message in binary
	9.6 AT+MQTTSUB - Subscribe to MQTT Topic
	9.7 AT+MQTTUNSUB - Unsubscribe from MQTT Topic
	9.8 AT+MQTTCLEAN - Close the MQTT Connection
	9.9 MQTT Error Codes
	9.10 MQTT Notes
	9.11 Example 1: MQTT over TCP (with a Local MQTT Broker)
	9.12 Example 2: MQTT over TLS (with a Local MQTT Broker)
	9.13 Example 3: MQTT over WSS

	10. HTTP AT Command
	10.1 AT+HTTPCLIENT-Send HTTP Client Request
	10.2 HTTP Error Code

	Appendix. How to generate an ESP8266 AT firmware

