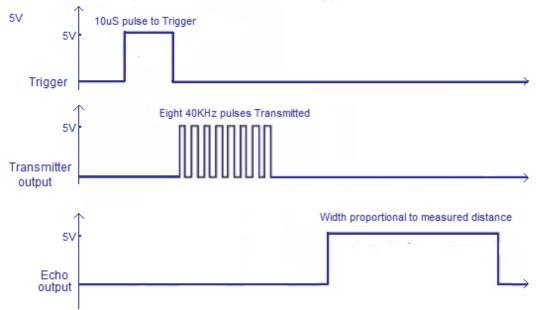
Ultrasonic Sensor 用户手册


1. 接口说明

引脚号	标识	描述
1	VCC	电源正(3.3V-5.0V)
2	GND	电源地
3	ЕСНО	接收管脚
4	TRIG	发送管脚

表1. 接口说明

2. 控制原理

原理:超声波测距原理是当发送的超声波遇到物体后被反射回来,被接收端接收。通过发送信号到接收到回响信号时间间隔可以算得距离。

以上时序图表明超声波的控制原理。模块工作时 IO 口给至少 10us 的高平信号控制 TRIG 触发测距。模块将自动发射 8 个 40kHz 的方波,并且自动检测是否有信号返回。若有信号返回,通过 ECHO 输出一个高电平,而高电平的持续时间就是超声波发射到返回的时间。

根据声音传播的速度和时间可以测出距离:测量距离=(测量时间*声音速度)/2。声音的传播速度通常按 340m/s 来计算。

4. 性能参数:

参数名称	备注	最小值	典型值	最大值	单位
工作电压		3.0		5.5	V
5V 工作电流	Vcc=5V		2.8		mA
3.3V 工作电流	Vcc=3.3V		2.2		mA
5V 最小探测距离	Vcc=5V		2	3	cm
3.3V 最小探测距离	Vcc=3.3V		2	3	cm
5V 最大探测距离	Vcc=5V	400	450	600	cm
3.3V 最大探测距离	Vcc=3.3V	350	400	550	cm
探测角度				15	0
探测精度			1		%
分辨率			1		mm
输出方式			GPIO		
工作温度		-20		80	°C

表2. 性能参数

5. 操作与现象

下面,以接入我们的开发板为例。

stm32 和 ardiono 开发板:


- ① 将配套程序下载到相应的开发板中。
- ② 将串口线和模块接入开发板,给开发板上电,打开串口调试软件。模块与开发板连接如下表所示:

端口	STM32 单片机引脚
VCC	3.3V
GND	GND
ЕСНО	A0 (PA_0)
TRIG	A1 (PA_1)

表3. 模块接入 XNUCLEO-F103R 开发板

端口	Arduino 引脚
VCC	AO
GND	GND
ЕСНО	AO
TRIG	A1

表4. 模块接入 Arduino

树莓派开发板:

将程序复制到树莓派中。模块与开发板连接如下表所示:

端口	STM32 单片机引脚			
VCC	3.3V			
GND	GND			
ЕСНО	27 (BCM)			
TRIG	22 (BCM)			

表5. 模块接入 XNUCLEO-F103R 开发板

进入 Linux 终端, 在终端执行以下命令。

sudo python Ultrasonic_Ranging.py、

预期结果:小车会实现超声波测距功能呢。超声波模块会测量出小车和前面障碍物的距离,并打印显示出来。