

MarsBoard AM335X 套餐 A 用户手册

产品概述

该套餐主要是在 Marsboard AM335X 的基础上接入常用的 Arduino 模块,有 Accessory Shield 和 Analog Test Shield。提供了按键、温度传感器、ADC、DAC 蜂鸣器、RTC、OLED、ADXL345、 PWM、ACC 等测试功能,并提供所有例程源码,用户可以在此基础上快速开发属于自己的产品。

1. 下载系统固件

1.1. 系统固件的下载

相关固件下载链接:

http://www.waveshare.net/wiki/MarsBoard AM335X IMG

固件名称为:

MarsBoard-AM335X-Package-A-TF-4GB-Debian-7.5-HDMI-2015.06.20-v2.1.img(带"Package-A")

1.2. TF 卡系统的烧写

- 解压固件。
 在电脑上使用 7z 解压缩软件解压相应镜像文件。
- 格式化 TF 卡。
 运行 SDFormatter.exe 格式化 TF 卡。

SDFormatter V3.1	×
	请确认存储媒介为 SD/SDHC/SDXC存储卡。 若进行SD格式化,则所有数据 SSS 将丢失。 SD、SDHC及SDXC标志为SD−3C、LLC的商 标。 北方星空修正汉化
驱动器:	
谷重: 格式化选项: 快速格式化,逻辑	运标: 选项设置 最大小调整关闭(OFF)
	格式化 完成

3) 烧写系统固件。

注意:烧录镜像之前,请确保 TF 卡的容量不低于固件的大小!

运行软件 Win32DiskImager.exe,选择已解压的系统固件,点击 Write 进行烧写。

 \times

🎭 Win32 Disk Imager	- D X
Image File	Device
M335X-eMMC-2GB-Debian-7.5-HDMI-2015.06.20-v1.1.img	3
Copy MD5 Hash:	
- Progress	
Version: 0.8 Cancel Read Write	Exit

1.3. TF 卡系统的启动

注意: 以下提到的电源均为 5V/2A 的电源适配器。

- 1) 将烧写系统固件的 TF 卡装到 TF 卡座;
- 2) 将启动选择开关(BOOT)拨向"SD"端;
- 3) 将 miniUSB 线接入 SIM-AM335X 底板的 DEBUG 接口,另一端接电脑的 USB 接口,打开 PUTTY (串口调试终端),设置正确的串口号和波特率(115200);
- 4) 接上电源,即可启动系统。

1.4. 登录系统

接上电源启动系统, debian 的用户名是: debian, 密码是: temppd;
 COM3 - PuTTY

2) 切换到 root 用户

3) 在终端中输入:

./cape

P COM3 - PuTTY	_		×
gr.9/slots: Permission denied			^
/home/debian/capes: 12: /home/debian/capes: cannot create /sys/dev	ices/	bone_	cape
mgr.9/slots: Permission denied			
debian@beaglebone:~\$			
debian@beaglebone:~\$ sudo -s			
[sudo] password for debian:			
root@beaglebone:/home/debian# ./capes			
root@beaglebone:/home/debian#			\sim

说明:所以的测试都在 root 权限下。

2. 功能测试

注:所有测试的 API 源码在系统/home/debian /API 目录下。

2.1 ACCESSORY SHIELD 模块测试

1) 按键测试

在终端输入:

test_key

按下按键可以打印对应的值。

2) LM75 测试

在终端输入:

test_lm75

B COM3 - PuTTY	_	×
^C		^
root@beaglebone:/mnt/ARM335X/wsbbblack/API/test_gps# test_lm75		
temperature:22.375000		~

打印出温度的值。

3) ADC 测试

在终端输入:

test_adc 0

Putty	_	\times
root@beaglebone:/home/debian# test_adc 0		/
Channel 0 current value is 2201		
Channel 0 current value is 2201		
Channel 0 current value is 2200		
Channel 0 current value is 2201		
Channel 0 current value is 2201		
Channel 0 current value is 2201		
Channel 0 current value is 2201		~

调节 Analog 旋钮,在终端上可以看到数值改变。

4) OLED 测试

在终端输入:

test_oled

COM3-PuTTY - C X root@beaglebone:/mnt/ARM335X/wsbbblack/API/test_gps# test_oled

OLED 屏显示出图片。

5) 蜂鸣器测试

在终端输入(蜂鸣器响):

test_gpio_buzzer 0

Putty	_	×
root@beaglebone:/mnt/ARM335X/wsbbblack/API/test_gps# test	t_gpio_buzzer 0	^

关闭蜂鸣器:

test_gpio_buzzer 1

6) RTC 测试

在终端输入:

date

date 020809302014.23

hwclock -w -f /dev/rtc1

如果提示读时间错误,重新执行以下命令即可

hwclock -w -f /dev/rtc1

hwclock -r -f /dev/rtc1

hwclock -s -f /dev/rtc1

断电重启

hwclock -r -f /dev/rtc1

hwclock -s -f /dev/rtc1

7) ADXL345 测试

在终端输入:

test_adx345

COM3 - PuTTY	_	×
x=2570.2,y=4.4,z=8.9		~
x=2569.5, y=2.9, z=9.1		
x=2569.8,y=2568.6,z=10.2		
x=2569.6,y=2566.7,z=9.5		
x=2569.5,y=2566.9,z=9.7		
x=2569.2,y=1.2,z=9.6		
x=2568.9, y=4.4, z=8.4		
x=2568.9, y=4.3, z=8.2		
x=2568.7,y=4.7,z=8.1		
x=2568.8, y=4.6, z=8.2		
^C		
root@beaglebone:/home/debian#		\sim

改变模块的角度,打印出不同的数值。

COM3 - PuTTY	_	\times
x=2570.2,y=4.4,z=8.9		~
x=2569.5,y=2.9,z=9.1		
x=2569.8,y=2568.6,z=10.2		
x=2569.6,y=2566.7,z=9.5		
x=2569.5,y=2566.9,z=9.7		
x=2569.2,y=1.2,z=9.6		
x=2568.9,y=4.4,z=8.4		
x=2568.9,y=4.3,z=8.2		
x=2568.7,y=4.7,z=8.1		
x=2568.8,y=4.6,z=8.2		
^C		
root@beaglebone:/home/debian#		\sim

2.2 ANALOG TEST SHIELD 模块测试

版本: V2.0。日期: 2016 年 5 月 13 日。

1) DAC 测试

将跳线帽跳在 DAC-SPK, DAC-LED

在终端输入:

test_dac

可以听到喇叭不同电压的响声,可以看到 LED 灯在闪烁。调节 Volume 旋钮可以改变喇叭声音的大小。

2) PWM 测试

将跳线帽跳在 PWM-SPK, PWM-LED, D11-PWM

在终端输入:

test_gpio_pwm 100

P COM3 - PuTTY	_	×
root@beaglebone:/home/debian#		\sim
root@beaglebone:/home/debian#		
root@beaglebone:/home/debian# test_gpio_pwm 100		
		\sim

改变参数的值可以听到喇叭不同电压的响声,可以改变 LED 亮度。

说明:这里的 PWM 是通过 GPIO 模拟的。

3) ADC 测试

将跳线帽跳在 ADC-A0

在终端输入:

test_adc 0

Putty	_	\times
root@beaglebone:/home/debian# test_adc 0		^
Channel 0 current value is 2201		
Channel 0 current value is 2201		
Channel 0 current value is 2200		
Channel 0 current value is 2201		
Channel 0 current value is 2201		
Channel 0 current value is 2201		
Channel 0 current value is 2201		~

调节 Analog 旋钮,在终端上可以看到数值改变。