

产品概述

SMD356C 是三相混合式步进电机驱动器,支持 16 档驱动电流和步进细分设置,定位精度可达 12000 脉冲/转,可广泛应用于数控设备、雕刻机、切割机等。

特点

- 支持 DC24-60V 宽电压输入,最大直流输入电压 80V
- 支持步进细分设置,分辨率可达 12000 脉冲/转
- 支持电流设置,可调 1.2A/相到 6.0A/相
- 支持共阴、共阳、差分三种控制方式
- 拥有欠压、过压、过热、过流报警
- 拥有掉电相位记忆功能
- I/O 信号和输入信号均通过光电隔离
- 步进脉冲停止超过 100ms 时,线圈电流自动减到设定电流的一半
- 提供完善的配套资料手册(提供树莓派、STM32、Arduino 例程)

产品参数

工作电压: 24~60V

信号电压: 4.2~24V

相电流: 1.2~6A

信号频率: <= 150KHz

控制方式: 共阴、共阳、差分

目录

产品概述	1
特点	1
产品参数	1
硬件说明	3
接线说明	3
细步说明	4
微步细分	4
电流细分	6
使用说明	7
下载例程	7
步进电机接线	7
树莓派例程	8
复制到程序到树莓派	8
安装函数库	9
硬件连接	10
运行程序	11
STM32 程序	12
Arduino	13
学 们问题	14

硬件说明

可以看出产品有两组接线端子以及两种拨码开关,它们的作用如下。

接线说明

标识	描述	
PU+	脉冲信号光电隔离正端	
PU-	脉冲信号光电隔离负端	
DR+	方向信号光电隔离正端	
DR-	方向信号光电隔离负端	
MF+	电机使能信号光电隔离正端	
MF-	电机使能信号光电隔离负端	
U	三相步进电机 U 端	
V	三相步进电机 V 端	

W	三相步进电机 W 端
NC	不接
DC-	电源地
DC+	DC24~60V

其中:

PU+/PU-: 为脉冲信号控制, 一个脉冲电机走一步, 需要保证脉冲宽度>2.5us;

DR+/DR-: 为方向信号控制;

MF+/MF-: 为电机使能信号控制;

有共阴, 共阳, 差分三种接线方式:

共阴: PU-、DR-、MF-接地, PU+、DR+、MF+接控制管脚, 高电平有效

共阳: PU+、DR+、MF+接 5~24V, PU-、DR-、MF-接控制管脚, 低电平有效

差分: 可以使用共阴与共阳两种方式进行组合;

【注意】建议使用共阴接法

细步说明

支持微步细分与电流细分

微步细分

REV/PULSE	D1	D2	D3	D4
300	ON	ON	ON	ON
500	ON	ON	ON	OFF
600	ON	ON	OFF	ON
800	ON	ON	OFF	OFF

				www.wavesilale.riet
1000	ON	OFF	ON	ON
1200	ON	OFF	ON	OFF
2000	ON	OFF	OFF	ON
3000	ON	OFF	OFF	OFF
4000	OFF	ON	ON	ON
5000	OFF	ON	ON	OFF
6000	OFF	ON	OFF	ON
10000	OFF	ON	OFF	OFF
12000	OFF	OFF	ON	ON
1600	OFF	OFF	ON	OFF
3200	OFF	OFF	OFF	ON
6400	OFF	OFF	OFF	OFF

D1\D2\D3\D4 分别对应驱动器的四个设置微步拨码开关,拥有 16 档微步细分设定,默认为 200 脉冲一圈。

一般的三相步进电机的步进角都是 1.2 度,因此当设置为 300 时,需要 200 个脉冲电机才能转 一圈,300 * 1.2 = 360 度。

【注意】设置需要重新上电才能生效

电流细分

可通过拨动对应的开关来控制对应的步进细分:

RSM(A)	Peak(A)	D1	D2	D3	D4
1.2	1.7	OFF	OFF	OFF	OFF
1.5	2.1	OFF	OFF	OFF	ON
2.0	2.8	OFF	OFF	ON	OFF
2.3	3.2	OFF	OFF	ON	ON
2.5	2.5	OFF	ON	OFF	OFF
3.0	4.2	OFF	ON	OFF	ON
3.2	4.5	OFF	ON	ON	OFF
3.6	5.0	OFF	ON	ON	ON
4.0	5.6	ON	OFF	OFF	OFF
4.5	6.3	ON	OFF	OFF	ON
5.0	7.0	ON	OFF	ON	OFF
5.3	7.4	ON	OFF	ON	ON
5.5	7.7	ON	ON	OFF	OFF
5.8	8.1	ON	ON	OFF	ON
6.0	8.4	ON	ON	ON	OFF
6.0	8.4	ON	ON	ON	ON

D1\D2\D3\D4 分别对应驱动器的四个设置电流拨码开关,拥有 16 档电流设定,电流越大扭力越大。

【注意】设置需要重新上电才能生效

使用说明

下载例程

在官网上找到对应产品,在产品资料打开下载路径,在 wiki 中下载示例程序:

文档

- 用户手册
- 原理图

程序

■ 示例程序

得到解压包并解压,得到如下文件:

Arduino 2018/11/26 19:18 文件夹 RaspberryPi 2018/11/24 17:27 文件夹 STM32 2018/11/26 19:18 文件夹

其中:

Arduino: Arduino 例程,以 UNO 开发板为例;

RaspberryPi: 树莓派例程,包含 BCM2835、WiringPi、python 三种例程;

STM32: STM32 例程,以 XNUCLEO-F103RB 开发板为例,是基于 STM32F103RBT6 的;

步进电机接线

本产品是一个三相步进驱动器,可以驱动三相步进电机

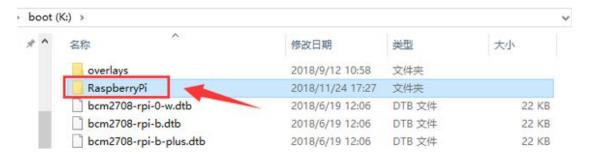
对于三相步进电机,一般出线为红、黄、蓝。

对应驱动器上的是:

U-红线

V-黄线

W-蓝线


树莓派例程

复制到程序到树莓派

使用读卡器将 SD 卡插入电脑,将会显示一个 40M 左右的 U 盘,盘名叫:boot.

将解压文件中 RaspberryPi 文件夹复制到 boot 根目录下。

然后弹出 U 盘,将 SD 卡插入树莓派中,插上 USB 上电,查看/boot 目录的文件:

Is /boot

执行如下命令将其复制到用户目录下,并修改其用户权限:

sudo cp -r /boot/RaspberryPi/ ./

sudo chmod 777 -R RaspberryPi/

pi@raspberrypi:~ \$ cd RaspberryPi/
pi@raspberrypi:~/RaspberryPi \$ ls
bcm2835 python wiringpi

安装函数库

需要安装必要的函数库(wiringPi、bcm2835、python 库),否则示例程序无法正常工作。

安装 BCM2835 库:

http://www.airspayce.com/mikem/bcm2835/

进入 BCM2835 的官网下载并把安装包复制到树莓派上,运行如下:

sudo tar zxvf bcm2835-1.xx.tar.gz

cd bcm2835-1.xx

sudo ./configure

make

sudo make check

sudo make install

其中 xx 代表的是下载的版本号,例如我下载的 bcm2835-1.52 那么就应该执行: sudo tar

zxvf bcm2835-1.52.tar.gz

安装 wiringPi 库:

sudo apt-get install git

sudo git clone git://git.drogon.net/wiringPi

cd wiringPi

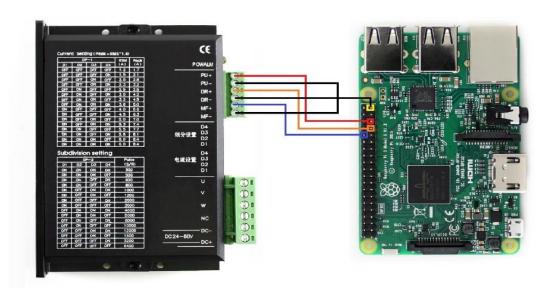
sudo ./build

安装 python 库:

sudo apt-get install python-pip

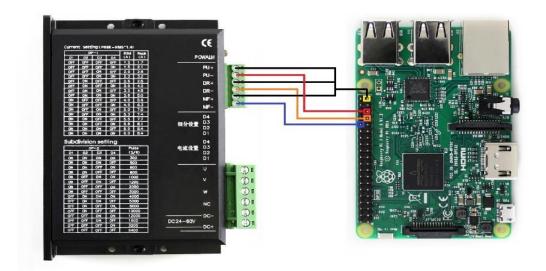
sudo pip install RPi.GPIO

sudo pip install spidev



硬件连接

有两种连线方式, 共阴极与共阳极接法


767-4-00	树莓派(BCM2835)		
驱动器	共阴接法	共阳接法	
PU+	19	5V	
PU-	GND	19	
DR+	13	5V	
DR-	GND	13	
MF+	12	5V	
MF-	GND	12	

共阴接法:

共阳接法:

【注意】共阴接法: 高电平有效; 共阳接法: 低电平有效

运行程序

● BCM2835:执行如下指令:

cd bcm2835

sudo ./motor

● wiringpi:执行如下指令:

cd wiringpi

sudo ./motor

● python: 执行如下指令:

cd python

sudo python main.py

● 实验现象:

电机顺时针转一周, 然后逆时针转两周。

STM32 程序

本例程使用的开发板为 XNUCLEO-F103RB,例程是基于 HAL 库。

有两种连线方式,可以采用共阴或者共阳接法。

767.24.00	XNUCLEC	D-F103RB
驱动器	共阴接法	共阳接法
PU+	PB4	5V
PU-	GND	PB4
DR+	PB10	5V
DR-	GND	PB10
MF+	PB8	5V
MF-	GND	PB8

【注意】共阴接法: 高电平有效; 共阳接法: 低电平接法

ARDUINO

本例程使用的开发板为 Arduino UNO。

有两种连线方式,可以采用共阴或者共阳接法。

개주=h므로	Arduin	no UNO	
驱动器	共阴接法	共阳接法	
PU+	5	5V	
PU-	GND	5	
DR+	6	5V	
DR-	GND	6	
MF+	7	5V	
MF-	GND	7	

【注意】共阴接法: 高电平有效; 共阳接法: 低电平接法

常见问题

1. 电机和驱动板为什么发热严重?

步进电机能效很低,只有 20%~30%的有用功,其它都是热能的方式表现,所以步进电机 长时间运行都会严重发热,不过在额定电流下都是可以承受的。

电机不能正常工作,为什么在左右抖动?
 电机在左右抖动说明电机缺相了,确保接线正确,以使电机正常转动。

3. 电机丢步?

相电流的大小跟步进电机的扭力有直接关系,如果步进电机扭力不足、丢步,可以在断电的情况下调节驱动板上的电流细分,加大输出电流。

4. 电机停止时,有"滋滋"声?

这是正常现象,因为每次转动的角度不一定在最小的步进角度上,需要电流来保持这个角度,只有在电机不转的时候失能电机驱动器,这种声音将会消失。

5. 产品上的 RS232 接口作用?

RS232 用于调整驱动器内部参数, 出厂时候配置, 正常情况不需要使用。