2.9inch e-Paper HAT (D)
目录
特点
- 尺寸: 2.9inch
- 外形尺寸(裸屏):79.0mm × 36.7mm × 0.34mm
- 外形尺寸(驱动板):89.5mm × 38mm
- 显示尺寸:66.9mm x 29.06mm
- 工作电压:3.3V/5V
- 通信接口:SPI
- 点距:0.138 x 0.138
- 分辨率:296 x 128
- 显示颜色:黑、白
- 灰度等级:2
- 局部刷新:0.3s
- 全局刷新 :2s
- 刷新功耗 : 26.4mW(typ.)
- 待机功耗 :<=0.017mW
【备注】:
刷新时间:刷新时间为实验测试数据,实际刷新时间会有误差,以实际效果为准。全局刷新过程中会有闪烁效果,这个是正常现象
功耗:功耗数据为实验测试数据,实际功耗由于驱动板的存在和实际使用情况的不同,会有一定误差,以实际效果为准
SPI 通信时序
由于墨水屏只需要显示,这里将从机发,主机收的数据线(MISO)隐藏。
CS:从机片选,当CS为低电平的时候,芯片使能
DC:数据/命令控制引脚,当DC=0时写入命令;DC=1时写入数据
SCLK: SPI通信时钟
SDIN:SPI通信主机发送,从机接收
时序:CPHL=0, CPOL=0 (SPI0)
【备注】具体关于SPI通信的相关信息,可以自行网上搜索资料了解
我们提供了基于4个硬件平台的示例程序,分别是Arduino UNO, Jetson Nano, Raspberry Pi 以及STM32。您可以根据自己的需求查看。(本模块为通用模板,请确认好您使用的墨水屏型号,使用正确的程序)
Arduino UNO
由于我们提供的示例程序是基于Arduino UNO,所以对应给出的硬件连接也是基于Arduino UNO. 如果你要连接屏幕到别的Arduino开发板,请先确认您的开发板接口是否兼容Arduino UNO. 如果不兼容UNO,需要修改硬件连接方式,以实际开发板引脚为准。
硬件连接
e-Paper | Arduino |
Vcc | 5V |
GND | GND |
DIN | D11 |
CLK | D13 |
CS | D10 |
DC | D9 |
RST | D8 |
BUSY | D7 |
运行程序
在产品百科界面下载程序,然后解压。Arduino程序位于 ~/Arduino UNO/…
请根据墨水屏型号选择对应的程序打开。比如1.54inch e-Paper Module. 打开epd1in54文件夹,并运行epd1in54.ino文件。
打开程序,选择开发板型号和对应COM口,然后点击编译并下载即可。
需要注意的是:由于Arduino UNO的RAM小的可怜,无法分配过大的内存用于处理画图等功能,所以部分大尺寸的屏幕例程只演示刷新图片,这个图片是存储在flash中,如需要使用Arduino UNO控制请使用e-Paper_Shield控制
Raspberry Pi
硬件连接
连接树莓派的时候,如果是驱动板带有40pin排座的,可以直接插到树莓派的40PIN排针上去,注意对好引脚。如果是选择用8PIN排线连接的话,请参考下方的引脚对应表格
对于1.02inch e-paper Module使用的是排针,需要对照以下表格连线
e-Paper | Raspberry Pi | |
BCM2835编码 | Board物理引脚序号 | |
VCC | 3.3V | 3.3V |
GND | GND | GND |
DIN | MOSI | 19 |
CLK | SCLK | 23 |
CS | CE0 | 24 |
DC | 25 | 22 |
RST | 17 | 11 |
BUSY | 24 | 18 |
开启SPI接口
- 打开树莓派终端,输入以下指令进入配置界面
sudo raspi-config 选择Interfacing Options -> SPI -> Yes 开启SPI接口
sudo reboot
请确保SPI没有被其他的设备占用,你可以在/boot/config.txt中间检查
安装库
- 安装BCM2835, 打开树莓派终端,并运行一下指令
wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.60.tar.gz tar zxvf bcm2835-1.60.tar.gz cd bcm2835-1.60/ sudo ./configure sudo make sudo make check sudo make install # 更多的可以参考官网:http://www.airspayce.com/mikem/bcm2835/
- 安装wiringPi
sudo apt-get install wiringpi #对于树莓派4B可能需要进行升级: cd /tmp wget https://project-downloads.drogon.net/wiringpi-latest.deb sudo dpkg -i wiringpi-latest.deb gpio -v # 运行gpio -v会出现2.52版本,如果没有出现说明安装出错 #Bullseye分支系统使用如下命令: git clone https://github.com/WiringPi/WiringPi cd WiringPi ./build gpio -v # 运行gpio -v会出现2.70版本,如果没有出现说明安装出错
- 安装Python函数库
#python2 sudo apt-get update sudo apt-get install python-pip sudo apt-get install python-pil sudo apt-get install python-numpy sudo pip install RPi.GPIO sudo pip install spidev #python3 sudo apt-get update sudo apt-get install python3-pip sudo apt-get install python3-pil sudo apt-get install python3-numpy sudo pip3 install RPi.GPIO sudo pip3 install spidev
下载测试程序
打开树莓派终端,执行:
sudo git clone https://github.com/waveshare/e-Paper cd e-Paper/RaspberryPi_JetsonNano/
运行测试程序
- C语言
找到mian.c文件,打开并将对应自己的墨水屏型号的注释去掉,然后编译并运行程序
cd c sudo make clean sudo make sudo ./epd
- python
根据墨水屏型号运行对应的例程, xxx对应墨水屏型号,比如1.54: epd_1in54.py
cd python/examples # python2 sudo python epdxxx.py # python3 sudo python3 epdxxx.py
Jetson nano Developer Kit
Jetson nano程序使用的是模拟SPI,所以刷新速度会相对较慢一些
硬件连接
Jetson Nano的40PIN引脚是兼容树莓派的40PIN引脚的,并且提供了一个Jetson.GPIO库跟树莓派的RPI.GPIO 库的API是一致的,所以这里连接的序号跟树莓派的是一样的
e-Paper | Jetson Nano Developer Kit | |
BCM2835编码 | Board物理引脚序号 | |
VCC | 3.3V | 3.3V |
GND | GND | GND |
DIN | 10(SPI0_MOSI) | 19 |
CLK | 11(SPI0_SCK | 23 |
CS | 8(SPI0_CS0) | 24 |
DC | 25 | 22 |
RST | 17 | 11 |
BUSY | 24 | 18 |
软件设置
安装函数库
- 打开终端界面,输入以下指令安装相应的函数库
sudo apt-get update sudo apt-get install python3-pip sudo pip3 install Jetson.GPIO sudo groupadd -f -r gpio sudo usermod -a -G gpio your_user_name sudo cp /opt/nvidia/jetson-gpio/etc/99-gpio.rules /etc/udev/rules.d/ sudo udevadm control --reload-rules && sudo udevadm trigger
【注意】your_user_name 是你使用的用户名
- 安装I2C
sudo apt-get install python-smbus
- 安装图像处理库:
sudo apt-get install python3-pil sudo apt-get install python3-numpy
下载测试程序
打开linux终端,执行:
sudo git clone https://github.com/waveshare/e-Paper cd e-Paper/RaspberryPi_JetsonNano/
运行测试程序
- C语言
找到mian.c文件,打开并将对应自己的墨水屏型号的注释去掉,然后编译并运行程序
cd c sudo make clear sudo make sudo ./epd
- python
根据墨水屏型号运行对应的例程, xxx对应墨水屏型号,比如1.54: epd_1in54.py
cd python/examples # python2 sudo python epdxxx.py # python3 sudo python3 epdxxx.py
STM32
硬件连接
我们提供的例程是基于STM32F103ZET6的,提供的连接方式也是对应的STM32F103ZET6的引脚,如果有需要移植程序,请按实际引脚连接
e-Paper | STM32 |
Vcc | 3.3V |
GND | GND |
DIN | PA7 |
CLK | PA5 |
CS | PA4 |
DC | PA2 |
RST | PA1 |
BUSY | PA3 |
运行程序
下载程序,找到STM32程序文件目录并打开STM32工程。注意使用前先确保电脑已经安装好keil5软件。
确认好开发板型号,并连接好下载器。点击编译,然后点击下载将程序下载到开发板即可
我们提供了基于4个硬件平台的示例程序,分别是Arduino UNO, Jetson Nano, Raspberry Pi以及STM32。您可以根据自己的需求查看。(这里是SPI墨水屏通用模板,所以会有些函数不适用于您手上的屏幕,具体以示例程序为准)
程序分为底层硬件接口、中间层墨水屏驱动、上层应用;
实际上使用的语言为C\C++\python:
- Arduino UNO:提供C++他是兼容C的
- Jetson Nano:提供了C语言、python
- Raspberry Pi:提供了C语言、python
- STM32:提供了C语言
其中:
Jetson Nano、Raspberry Pi、STM32的C语言:EPD库互相兼容,他们只有底层硬件接口不一样,其他都是一样的;
Jetson Nano、Raspberry Pi的python:EPD库互相兼容,他们只有底层硬件接口不一样,其他都是一样的;
因此以下分开讲解C\C++\python,每小章节依次讲解底层硬件接口、中间层墨水屏驱动、上层应用
C(适用于Jetson Nano、Raspberry Pi、STM32)
底层硬件接口
我们进行了底层的封装,由于硬件平台不一样,内部的实现是不一样的,如果需要了解内部实现可以去对应的目录中查看
在DEV_Config.c(.h)可以看到很多定义,包括:
对于Raspberry Pi,在目录:RaspberryPi&JetsonNano\c\lib\Config
C语言使用了2种方式进行驱动:分别是BCM2835库、WiringPi库 默认使用WiringPi库进行操作,如果你需要使用BCM2835来驱动的话,可以打开RaspberryPi&JetsonNano\c\Makefile,修改13-14行,如下:
对于Jetson Nano,在目录:RaspberryPi&JetsonNano\c\lib\Config
对于STM32,在目录:STM32\STM32-F103ZET6\User\Config
- 数据类型:
#define UBYTE uint8_t #define UWORD uint16_t #define UDOUBLE uint32_t
- 模块初始化与退出的处理:
void DEV_Module_Init(void); void DEV_Module_Exit(void); 注意: 1.这里是处理使用墨水屏前与使用完之后一些GPIO的处理。 2.对于PCB带有Rev2.1的,DEV_Module_Exit()之后整个模块会进入低功耗,经过测试这个功耗基本为0;
- GPIO读写:
void DEV_Digital_Write(UWORD Pin, UBYTE Value); UBYTE DEV_Digital_Read(UWORD Pin);
- SPI写数据
void DEV_SPI_WriteByte(UBYTE Value);
中间层墨水屏驱动
e-paper驱动代码文件,在如下的目录中可以找到
对于Raspberry Pi和Jetson Nano,在目录:RaspberryPi&JetsonNano\c\lib\e-Paper
对于STM32,在目录:STM32\STM32-F103ZET6\User\e-Paper
如下图:
打开.h可以看到如下的函数
- 墨水屏初始化,再屏幕开始工作时和退出睡眠模式之后调用
//1.54inch e-Paper、1.54inch e-Paper V2、2.13inch e-Paper、2.13inch e-Paper V2、2.13inch e-Paper (D)、2.9inch e-Paper、2.9inch e-Paper (D) void EPD_xxx_Init(UBYTE Mode); // Mode = 0 全局刷新初始化、Mode = 1 局部刷新初始化 //其他型号 void EPD_xxx_Init(void);
其中xxx表示,墨水屏型号。如是是2.13D,全屏初始化那么是EPD_2IN13D_Init(0),局部刷新初始化EPD_2IN13D_Init(1);如果是1.54 V2,那么EPD_1IN54_V2_Init();如果是7.5B,那就是EPD_7IN5BC_Init(),因为7.5B与7.5C公用驱动代码,只是显示的颜色不一样
- 清屏,把墨水屏刷成白色
void EPD_xxx_Clear(void);
其中xxx表示,墨水屏型号。如是是2.13D,那么是EPD_2IN9D_Clear();如果是7.5B,那就是EPD_7IN5_Clear(),因为7.5B与7.5C公用驱动代码,只是显示的颜色不一样
- 传输一帧的图片数据并打开显示
//黑白双色墨水屏 void EPD_xxx_Display(UBYTE *Image); //黑白红或黑白黄墨水屏 void EPD_xxx_Display(const UBYTE *blackimage, const UBYTE *ryimage);
需要注意以下的几个是特例:
//对于2.13inch e-paper (D)、2.9inch e-paper (D)两款柔性屏幕,局部刷新 void EPD_2IN13D_DisplayPart(UBYTE *Image); void EPD_2IN9D_DisplayPart(UBYTE *Image);
//对于1.54inch e-paper V2、2.13inch e-paper V2由于控制芯片升级,对于局部刷新,需要调用EPD_xxx_DisplayPartBaseImage显示静态的背景图片,也就是以这个图片为基础进行局部刷新,然后调用动态的EPD_xxx_DisplayPart() void EPD_1IN54_V2_DisplayPartBaseImage(UBYTE *Image); void EPD_1IN54_V2_DisplayPart(UBYTE *Image); void EPD_2IN13_V2_DisplayPart(UBYTE *Image); void EPD_2IN13_V2_DisplayPartBaseImage(UBYTE *Image);
//对于STM32103ZET6,无法创建7.5B、7.5C、5.83B、5.83C足够的图像缓存,所以显示的半屏: void EPD_7IN5BC_DisplayHalfScreen(const UBYTE *blackimage, const UBYTE *ryimage); void EPD_5IN83BC_DisplayHalfScreen(const UBYTE *blackimage, const UBYTE *ryimage);
其中xxx表示,墨水屏型号。如是是2.13D,那么是EPD_2IN13D_Display();如果是7.5B,那就是EPD_7IN5BC_Display(),因为7.5B与7.5C公用驱动代码,只是显示的颜色不一样
- 进入睡眠模式
void EPD_xxx_Sleep(void);
注意进入了睡眠模式,只有两个方式能够重新工作:第一种硬件复位,第二种重新调用初始化函数
其中xxx表示,墨水屏型号。如是是2.13D,那么是EPD_2IN13D_Sleep();如果是7.5B,那就是EPD_7IN5BC_Sleep(),因为7.5B与7.5C公用驱动代码,只是显示的颜色不一样
上层应用
对于屏幕而言,如果需要进行画图、显示中英文字符、显示图片等怎么办,这些都是上层应用做的。这有很多小伙伴有问到一些图形的处理,我们这里提供了一些基本的功能
在如下的目录中可以找到GUI
对于Raspberry Pi和Jetson Nano,在目录:RaspberryPi&JetsonNano\c\lib\GUI\GUI_Paint.c(.h)
对于STM32,在目录:STM32\STM32-F103ZET6\User\GUI\GUI_Paint.c(.h)
在如下目录下是GUI依赖的字符字体:
对于Raspberry Pi和Jetson Nano,在目录:RaspberryPi&JetsonNano\c\lib\Fonts
对于STM32,在目录:STM32\STM32-F103ZET6\User\Fonts
- 新建图像属性:新建一个图像属性,这个属性包括图像缓存的名称、宽度、高度、翻转角度、颜色
void Paint_NewImage(UBYTE *image, UWORD Width, UWORD Height, UWORD Rotate, UWORD Color) 参数: image : 图像缓存的名称,实际上是一个指向图像缓存首地址的指针; Width : 图像缓存的宽度; Height: 图像缓存的高度; Rotate:图像的翻转的角度 Color :图像的初始颜色;
- 选择图像缓存:选择图像缓存,选择的目的是你可以创建多个图像属性,图像缓存可以存在多个,你可以选择你所创建的每一张图像
void Paint_SelectImage(UBYTE *image) 参数: image: 图像缓存的名称,实际上是一个指向图像缓存首地址的指针;
- 图像旋转:设置选择好的图像的旋转角度,最好使用在Paint_SelectImage()后,可以选择旋转0、90、180、270
void Paint_SetRotate(UWORD Rotate) 参数: Rotate: 图像选择角度,可以选择ROTATE_0、ROTATE_90、ROTATE_180、ROTATE_270分别对应0、90、180、270度
- 图像镜像翻转:设置选择好的图像的镜像翻转,可以选择不镜像、关于水平镜像、关于垂直镜像、关于图像中心镜像。
void Paint_SetMirroring(UBYTE mirror) 参数: mirror: 图像的镜像方式,可以选择MIRROR_NONE、MIRROR_HORIZONTAL、MIRROR_VERTICAL、MIRROR_ORIGIN分别对应不镜像、关于水平镜像、关于垂直镜像、关于图像中心镜像
- 设置点在缓存中显示位置和颜色:这里是GUI最核心的一个函数、处理点在缓存中显示位置和颜色;
void Paint_SetPixel(UWORD Xpoint, UWORD Ypoint, UWORD Color) 参数: Xpoint: 点在图像缓存中X位置 Ypoint: 点在图像缓存中Y位置 Color : 点显示的颜色
- 图像缓存填充颜色:把图像缓存填充为某颜色,一般作为屏幕刷白的作用
void Paint_Clear(UWORD Color) 参数: Color: 填充的颜色
- 图像缓存部分窗口填充颜色:把图像缓存的某部分窗口填充为某颜色,一般作为窗口刷白的作用,常用于时间的显示,刷白上一秒
void Paint_ClearWindows(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD Color) 参数: Xstart: 窗口的X起点坐标 Ystart: 窗口的Y起点坐标 Xend: 窗口的X终点坐标 Yend: 窗口的Y终点坐标 Color: 填充的颜色
- 画点:在图像缓存中,在(Xpoint, Ypoint)上画点,可以选择颜色,点的大小,点的风格
void Paint_DrawPoint(UWORD Xpoint, UWORD Ypoint, UWORD Color, DOT_PIXEL Dot_Pixel, DOT_STYLE Dot_Style) 参数: Xpoint: 点的X坐标 Ypoint: 点的Y坐标 Color: 填充的颜色 Dot_Pixel: 点的大小,提供默认的8种大小点 typedef enum { DOT_PIXEL_1X1 = 1, // 1 x 1 DOT_PIXEL_2X2 , // 2 X 2 DOT_PIXEL_3X3 , // 3 X 3 DOT_PIXEL_4X4 , // 4 X 4 DOT_PIXEL_5X5 , // 5 X 5 DOT_PIXEL_6X6 , // 6 X 6 DOT_PIXEL_7X7 , // 7 X 7 DOT_PIXEL_8X8 , // 8 X 8 } DOT_PIXEL; Dot_Style: 点的风格,大小扩充方式是以点为中心扩大还是以点为左下角往右上扩大 typedef enum { DOT_FILL_AROUND = 1, DOT_FILL_RIGHTUP, } DOT_STYLE;
- 画线:在图像缓存中,从 (Xstart, Ystart) 到 (Xend, Yend) 画线,可以选择颜色,线的宽度,线的风格
void Paint_DrawLine(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD Color, LINE_STYLE Line_Style , LINE_STYLE Line_Style) 参数: Xstart: 线的X起点坐标 Ystart: 线的Y起点坐标 Xend: 线的X终点坐标 Yend: 线的Y终点坐标 Color: 填充的颜色 Line_width: 线的宽度,提供默认的8种宽度 typedef enum { DOT_PIXEL_1X1 = 1, // 1 x 1 DOT_PIXEL_2X2 , // 2 X 2 DOT_PIXEL_3X3 , // 3 X 3 DOT_PIXEL_4X4 , // 4 X 4 DOT_PIXEL_5X5 , // 5 X 5 DOT_PIXEL_6X6 , // 6 X 6 DOT_PIXEL_7X7 , // 7 X 7 DOT_PIXEL_8X8 , // 8 X 8 } DOT_PIXEL; Line_Style: 线的风格,选择线是以直线连接还是以虚线的方式连接 typedef enum { LINE_STYLE_SOLID = 0, LINE_STYLE_DOTTED, } LINE_STYLE;
- 画矩形:在图像缓存中,从 (Xstart, Ystart) 到 (Xend, Yend) 画一个矩形,可以选择颜色,线的宽度,是否填充矩形内部
void Paint_DrawRectangle(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend, UWORD Color, DOT_PIXEL Line_width, DRAW_FILL Draw_Fill) 参数: Xstart: 矩形的X起点坐标 Ystart: 矩形的Y起点坐标 Xend: 矩形的X终点坐标 Yend: 矩形的Y终点坐标 Color: 填充的颜色 Line_width: 矩形四边的宽度,提供默认的8种宽度 typedef enum { DOT_PIXEL_1X1 = 1, // 1 x 1 DOT_PIXEL_2X2 , // 2 X 2 DOT_PIXEL_3X3 , // 3 X 3 DOT_PIXEL_4X4 , // 4 X 4 DOT_PIXEL_5X5 , // 5 X 5 DOT_PIXEL_6X6 , // 6 X 6 DOT_PIXEL_7X7 , // 7 X 7 DOT_PIXEL_8X8 , // 8 X 8 } DOT_PIXEL; Draw_Fill: 填充,是否填充矩形的内部 typedef enum { DRAW_FILL_EMPTY = 0, DRAW_FILL_FULL, } DRAW_FILL;
- 画圆:在图像缓存中,以 (X_Center Y_Center) 为圆心,画一个半径为Radius的圆,可以选择颜色,线的宽度,是否填充圆内部
void Paint_DrawCircle(UWORD X_Center, UWORD Y_Center, UWORD Radius, UWORD Color, DOT_PIXEL Line_width, DRAW_FILL Draw_Fill) 参数: X_Center: 圆心的X坐标 Y_Center: 圆心的Y坐标 Radius:圆的半径 Color: 填充的颜色 Line_width: 圆弧的宽度,提供默认的8种宽度 typedef enum { DOT_PIXEL_1X1 = 1, // 1 x 1 DOT_PIXEL_2X2 , // 2 X 2 DOT_PIXEL_3X3 , // 3 X 3 DOT_PIXEL_4X4 , // 4 X 4 DOT_PIXEL_5X5 , // 5 X 5 DOT_PIXEL_6X6 , // 6 X 6 DOT_PIXEL_7X7 , // 7 X 7 DOT_PIXEL_8X8 , // 8 X 8 } DOT_PIXEL; Draw_Fill: 填充,是否填充圆的内部 typedef enum { DRAW_FILL_EMPTY = 0, DRAW_FILL_FULL, } DRAW_FILL;
- 写Ascii字符:在图像缓存中,在 (Xstart Ystart) 为左顶点,写一个Ascii字符,可以选择Ascii码可视字符字库、字体前景色、字体背景色
void Paint_DrawChar(UWORD Xstart, UWORD Ystart, const char Ascii_Char, sFONT* Font, UWORD Color_Foreground, UWORD Color_Background) 参数: Xstart: 字符的左顶点X坐标 Ystart: 字体的左顶点Y坐标 Ascii_Char:Ascii字符 Font: Ascii码可视字符字库,在Fonts文件夹中提供了以下字体: font8:5*8的字体 font12:7*12的字体 font16:11*16的字体 font20:14*20的字体 font24:17*24的字体 Color_Foreground: 字体颜色 Color_Background: 背景颜色
- 写英文字符串:在图像缓存中,在 (Xstart Ystart) 为左顶点,写一串英文字符,可以选择Ascii码可视字符字库、字体前景色、字体背景色
void Paint_DrawString_EN(UWORD Xstart, UWORD Ystart, const char * pString, sFONT* Font, UWORD Color_Foreground, UWORD Color_Background) 参数: Xstart: 字符的左顶点X坐标 Ystart: 字体的左顶点Y坐标 pString:字符串,字符串是一个指针 Font: Ascii码可视字符字库,在Fonts文件夹中提供了以下字体: font8:5*8的字体 font12:7*12的字体 font16:11*16的字体 font20:14*20的字体 font24:17*24的字体 Color_Foreground: 字体颜色 Color_Background: 背景颜色
- 写中文字符串:在图像缓存中,在 (Xstart Ystart) 为左顶点,写一串中文字符,可以选择GB2312编码字符字库、字体前景色、字体背景色;
void Paint_DrawString_CN(UWORD Xstart, UWORD Ystart, const char * pString, cFONT* font, UWORD Color_Foreground, UWORD Color_Background) 参数: Xstart: 字符的左顶点X坐标 Ystart: 字体的左顶点Y坐标 pString:字符串,字符串是一个指针 Font: GB2312编码字符字库,在Fonts文件夹中提供了以下字体: font12CN:ascii字符字体11*21,中文字体16*21 font24CN:ascii字符字体24*41,中文字体32*41 Color_Foreground: 字体颜色 Color_Background: 背景颜色
- 写数字:在图像缓存中,在 (Xstart Ystart) 为左顶点,写一串数字,可以选择Ascii码可视字符字库、字体前景色、字体背景色
void Paint_DrawNum(UWORD Xpoint, UWORD Ypoint, int32_t Nummber, sFONT* Font, UWORD Color_Foreground, UWORD Color_Background) 参数: Xstart: 字符的左顶点X坐标 Ystart: 字体的左顶点Y坐标 Nummber:显示的数字,这里使用的是32位长的int型保存,可以最大显示到2147483647 Font: Ascii码可视字符字库,在Fonts文件夹中提供了以下字体: font8:5*8的字体 font12:7*12的字体 font16:11*16的字体 font20:14*20的字体 font24:17*24的字体 Color_Foreground: 字体颜色 Color_Background: 背景颜色
- 显示时间:在图像缓存中,在 (Xstart Ystart) 为左顶点,显示一段时间,可以选择Ascii码可视字符字库、字体前景色、字体背景色;这里是方便测试局部刷新而写的,因为局部刷新需要的时间为0.3S,整体显示少于1S加上数据的传输,可以做到1S刷新一次
void Paint_DrawTime(UWORD Xstart, UWORD Ystart, PAINT_TIME *pTime, sFONT* Font, UWORD Color_Background, UWORD Color_Foreground) 参数: Xstart: 字符的左顶点X坐标 Ystart: 字体的左顶点Y坐标 pTime:显示的时间,这里定义好了一个时间的结构体,只要把时分秒各位数传给参数; Font: Ascii码可视字符字库,在Fonts文件夹中提供了以下字体: font8:5*8的字体 font12:7*12的字体 font16:11*16的字体 font20:14*20的字体 font24:17*24的字体 Color_Foreground: 字体颜色 Color_Background: 背景颜色
- 写图片:把一个位图写入图像缓存中
void Paint_DrawBitMap(const unsigned char* image_buffer) 参数: image_buffer: 图像数据的缓存中的首地址
- 读取本地的bmp图片并写到缓存中
对于Jetson Nano, Raspberry Pi这些Linux操作系统的,可以读写图片
对于Raspberry Pi和Jetson Nano,在目录:RaspberryPi&JetsonNano\c\lib\GUI\GUI_BMPfile.c(.h)
UBYTE GUI_ReadBmp(const char *path, UWORD Xstart, UWORD Ystart) 参数: path:BMP图片的相对路径 Xstart: 图片的左顶点X坐标,一般默认传0 Ystart: 图片的左顶点Y坐标,一般默认传0
用户测试代码
前三个章节介绍了经典的linux三层代码结构,这里稍微讲解一下用户测试代码
对于Raspberry Pi和Jetson Nano,在目录:RaspberryPi&JetsonNano\c\examples,为全部的测试代码,在本目录下的main.c中可以多个屏蔽;
如果需要运行7.5inch e-paper测试程序,你需要把42行的屏蔽去掉
// EPD_7in5_test();
改成
EPD_7in5_test();
在linux命令模式下重新执行如下:
make clean make sudo ./epd
对于STM32,在目录:STM32\STM32-F103ZET6\User\Examples,为全部的测试代码,可以打开工程后在mai.c中本目录下的main.c中可以多个屏蔽;
打开工程:STM32\STM32-F103ZET6\MDK-ARM\epd-demo.uvprojx
如果需要运行7.5inch e-paper测试程序,你需要把96行的屏蔽去掉
// EPD_7in5_test();
改成
EPD_7in5_test();
在Keil中重新编译并选择下载器下载
Python(适用于Jetson Nano\Raspberry Pi)
适用于python2.7和python3
对于python而言他的调用没有C复杂
Raspberry Pi和Jetson Nano:RaspberryPi&JetsonNano\python\lib\
epdconfig.py
- 模块初始化与退出的处理:
def module_init() def module_exit() 注意: 1.这里是处理使用墨水屏前与使用完之后一些GPIO的处理。 2.对于PCB带有Rev2.1的,module_exit()之后整个模块会进入低功耗,经过测试这个功耗基本为0;
- GPIO读写:
def digital_write(pin, value) def digital_read(pin)
- SPI写数据
def spi_writebyte(data)
epdxxx.py(xxx表示尺寸,若是2.13inch e-paper,则为epd2in13.py,依此类推)
- 墨水屏初始化,再屏幕开始工作时和退出睡眠模式之后调用
对于1.54inch e-Paper、1.54inch e-Paper V2、2.13inch e-Paper、2.13inch e-Paper V2、2.13inch e-Paper (D)、2.9inch e-Paper、2.9inch e-Paper (D) def init(self, update) # 选择lut_full_update或lut_partial_update 其他型号 def init(self)
- 清屏,把墨水屏刷成白色
def Clear(self) def Clear(self, color) # 对于某几个屏幕需要调用这个
- 把图片转换成数组
def getbuffer(self, image)
- 传输一帧的图片数据并打开显示
黑白双色墨水屏 def display(self, image) 黑白红或黑白黄墨水屏 def display(self, blackimage, redimage) 需要注意以下的几个是特例:<br /> 对于2.13inch e-paper (D)、2.9inch e-paper (D)两款柔性屏幕,局部刷新 def DisplayPartial(self, image) 对于1.54inch e-paper V2、2.13inch e-paper V2由于控制芯片升级,对于局部刷新,需要调用displayPartBaseImage()显示静态的背景图片,也就是以这个图片为基础进行局部刷新,然后调用动态的displayPart() def displayPartBaseImage(self, image) def displayPart(self, image)
- 进入睡眠模式
def sleep(self)
epd_xxx_test.py(xxx表示尺寸,若是2.13inch e-paper,则为epd_2in13_test.py,依此类推)
python在如下目录:
Raspberry Pi和Jetson Nano:RaspberryPi&JetsonNano\python\examples\
如果你的python版本是python2,且需要运行7.5inch e-paper测试程序,在linux命令模式下重新执行如下:
sudo python epd_7in5_test.py
如果你的python版本是python3,且需要运行7.5inch e-paper测试程序,在linux命令模式下重新执行如下:
sudo python3 epd_7in5_test.py
关于旋转设置
如果在python程序中你需要设置屏幕旋转,可以通过语句blackimage = blackimage.transpose(Image.ROTATE_270)设置。
blackimage = blackimage.transpose(Image.ROTATE_270) redimage = redimage.transpose(Image.ROTATE_270) #支持ROTATE_90, ROTATE_180, ROTATE_270三个参数
Arduino
对于Arduino,由于Arduino UNO的内存不够,部分例程写了怎么写字符,但是不推荐这样使用,这样复杂化了Arduino的操作,如果需要用e-paper Sheild驱动
文档
程序
旧版本示例程序
数据手册
开发资料
相关链接
- 树莓派系列教程:人生若只如初见
- 树莓派系列教程:烧写镜像
- 树莓派系列教程:远程登录树莓派(SSH登陆/远程桌面登陆/串口登陆)
- 树莓派系列教程:更换软件源
- 树莓派系列教程:访问树莓派
- 树莓派系列教程:配置WiFi
- 树莓派系列教程:系统配置(raspi-config)
- 树莓派系列教程:中文输入法
- 树莓派系列教程:摄像头
- 树莓派系列教程:Linux常用命令以及vi/vim编辑器
- 树莓派系列教程:文件共享(samba)
- 树莓派系列教程:wiringPi、bcm2835、python库安装
- 树莓派系列教程:如何点亮一个LED灯(上)
- 树莓派系列教程:如何点亮一个LED灯(下)
- 树莓派系列教程:按键
- 树莓派系列教程:I2C
- 树莓派系列教程:I2C编程
- 树莓派系列教程:I2C总线控制BMP180
- 树莓派系列教程:Serial串口
- 树莓派系列教程:红外遥控
- 树莓派系列教程:RTC
- 树莓派系列教程:PCF8591 AD/DA
- 树莓派系列教程:SPI
- 树莓派系列教程:物联网之MQTT
- Alphabot树莓派教程:变身路由器
- Alphabot树莓派教程:刷LEDE(OpenWRT)系统变身路由器
- 树莓派引脚对照表
- SIM868 ppp拨号上网
FAQ
|
|
|
|
|
|
|
|
|
|
|
|
|
|